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1. Introduction

Processes in the ocean occur on a variety of time- and lengthscales. The exchange be-

tween the deep and the upper ocean is a process, that can take several hundred years.

Dominant currents in the different global ocean basins have decadal and seasonal vari-

ations. On a smaller lengthscale an eddy circulation occurs on timescales of days to

weeks, and on the smallest lengthscale of millimeters, momentum is dissipated in in-

stants of a second. One of the central questions in modern physical oceanography is how

the different scales interact with each other and how they combine to transport heat and

material from the equator towards the poles.

The evolution of computer resources allows to implement ocean models on increasing

high resolution. A sufficient high resolution enables to resolve the eddy structure of

the so-called meso-scale ocean circulation and allows to study the effect of eddies on

the large-scale circulation. Low resolution models rely on the knowledge about eddy

contribution to the mean flow. These models are supposed to run for decades to predict

future climate changes and test climate sensivity. As low resolution models are not able

to resolve meso-scale features, these features have to be parametrized.

Two different popular approaches exist to an parametrization of meso-scale effects. An

approach by Marshall (1981) and an approach by Gent and McWilliams (1990) . Mar-

shall (1981) propose a parametrization of meso-scale mixing of quasi-geostrophic po-

tential vorticity fluxes. The parametrization is implemented in the mean momentum

equation. The advantage of this method is that potential vorticity (PV) is solely capa-

ble of representing the structure of the large scale circulation. Furthermore Eden (2010)

shows that a parametrization based on PV is able to reproduce the observed phenomena
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1. Introduction

of zonal jets. Zonal jets are driven by interaction between the large- and the meso-scale.

Most ocean models are based on an alternative approach, that implements a parametriza-

tion in the mean density budget.

First proposed by Gent and McWilliams (1990), the parametrization focuses on meso-

scale density fluxes. Gent and McWilliams (1990) consider the effect of meso-scale eddies

on the mean density field. Eddies are created by a release of large-scale energy. They

reduce the mean available potential energy of the ocean, that is stored in the sloping

isopycnals created by global wind-curls and heat fluxes.

Both Marshall (1981) and Gent and McWilliams (1990) relate the meso-scale fluxes

of the regarded variable to the mean gradient of the variable. The parametrization by

Gent and McWilliams is given by a diffusivity κb multiplied by the isopycnal slope vec-

tor. Hence a release of energy by eddies proportionally to the strength of the density

gradient will occur, where horizontal density gradients exist. The diffusivity κb is also

called thickness diffusivity, because it was derived from a model based on isopycnal co-

ordinates. Thickness diffusivity does not describe a diffusive mixing of density but a

redistribution of the thickness of isopycnal layers. Likewise the parametrization by Mar-

shall is given by a diffusivity κpv multiplied by the mean PV gradient. In this procedure

PV is redistributed along its mean gradient.

As it is not well understood which processes influence the magnitudes of the different

eddy diffusivities, their values were kept constant in first models using the parametriza-

tions.

Significant horizontal variations in eddy diffusivity were suggested from surface altimetry

by Stammer (1998), Bauer et al. (2002) and Marshall et al. (2006). Recently, vertical

distributions for eddy diffusivities are obtained from high resolution models. Various

studies (e.g. Eden (2006), Eden et al. (2007), Abernathey et al. (2010)) reveal that the

diffusivity varies in several orders of magnitude, with maximum values located in the

vicinity of strong currents.

Eden et al. (2009) show that a varying κb has systematic influences on the mean hydro-

graphic properties by comparing different closures for the thickness diffusivity κb in a
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coarse global ocean model. They observe amongst other a dependence of the equatorial

thermocline depth and the pathway of the Gulf Stream extension on different distribu-

tions of κb. The three approaches compared in the study each rely on one or more ocean

properties. These properties are the local stratification, the vertical shear of velocities,

and an eddy length scale. The size of the eddy length scale and the vertical structure

of thickness diffusivity are chosen to be close to estimates from observations or models.

The spatial dependency of thickness diffusivity is lacking a profound physical explana-

tion.

A physically meaningful spatial dependency of the diffusivities κb and κpv can be ob-

tained from the mean variables of the coarse models through baroclinic linear stability

analysis (LSA) (Green (1970)).

Meso-scale turbulence is generated by an unstable mean flow, that is resolved in the

model. In a linear approximation the unstable mean flow is favoring the growth of a

certain bandwidth of waves, that tend to grow to turbulent eddies. The full instability

problem is quite complex, thus most studies make use of a local approximation. Using

this approximation Gill et al. (1974) and Robinson and McWilliams (1974) show that

ocean currents are baroclinically unstable on scales consistent with observations. The

local approximation assumes, that the properties of the mean flow at a certain location

are constant at the scale of the excited wave. This approximation is valid for most re-

gions of the ocean, where barotropic instability created by the horizontal velocity shear

is negligible and where topographic slopes are flat.

The local approximation does not provide all of the dynamics, that play a role in eddy

formation, including the radiation of instabilities from boundary currents into the in-

terior (Hristova et al. (2010)) and the eddy feedback on the mean flow. However, the

local assumption provides a well-defined prediction and is the starting point for most

meso-scale ocean eddy theories.

Killworth (1997) explored a closure of eddy diffusivities κ based on linear stability theory

following a suggestion of Green (1970). The closure used in the following is proposed

in Eden (2011) and based on the idea of Killworth. The advantage of the closure is
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1. Introduction

a spatial distribution, that is a direct consequence of linear stability analysis without

further assumptions. Furthermore the closure can consider factors like depth-dependent

shear and stratification. Linear stability analysis also allows to study stabilization or

destabilization by a lateral dependent Coriolis force or by topography.

None of these factors are component of present closures.

In this study we use linear stability analysis on constructed exemplary ocean background

conditions to understand the spatial dependency of meso-scale eddy diffusivities. We

make use of the advantages of LSA to study the influences of depth-dependent shear and

stratification as well as topography and a lateral dependent Coriolis force. The knowl-

edge gained from the exemplary conditions is used to explain the spatial dependency of

eddy diffusivities, that are calculated by LSA for a global climatology, that is based on

observations (WOCE by Gouretski and Koltermann (2004)).

The goal is to understand, which oceanic background conditions lead to different verti-

cal and horizontal structures of diffusivities originating from baroclinic instability. The

detailed structure of the thesis is as following.

In the first part, parametrizations for buoyancy and momentum fluxes are derived and

the closure based on linear stability theory is presented.

The results consist of four sections. The first is dealing with simple constructed pro-

files to illustrate how LSA works and which vertical distributions of eddy diffusivities it

produces. The dependency of the solution on depth-dependent velocity shear, planetary

vorticity, and topography is studied using these profiles. In the second section example

profiles of the climatology are analyzed. The third section deals with the global dis-

tribution of eddy growthrates and eddy lengthscales and in the fourth section we show

global maps and transects of diffusivities, that result from the closure. We compare the

results to an approximate solution, that is not able to represent all effects included in

LSA.

In the discussion limits of the closure are pointed out and the eddy diffusivities are

compared to results from observational and model studies.
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2. Methods

2.1. Parametrization of meso-scale fluxes

To derive a parametrization for meso-scale fluxes we start with the primitive equations

in Boussinesq and hydrostatic approximation. Neglecting any friction or source terms,

they can be written as

∂uh
∂t

+ uh · ∇huh + fuh¬ = −∇hp (2.1)

b =
∂p

∂z
(2.2)

∂b

∂t
+ uh · ∇hb+ wN2 = 0 (2.3)

∇u = 0 (2.4)

The two horizontal momentum equations are combined to one term in eq. (2.1) in

which the vertical advection of momentum is assumed to be small and is neglected. The

horizontal velocities and derivatives are expressed as uh = (u, v) and∇h = (∂/∂x, ∂/∂y).

The pressure p denotes pressure divided by the reference density ρ0, f is the inertial

frequency. Vectors with the subscript ..¬ are rotated by 90◦ in the horizontal plane,

i.e. uh¬ = (−v, u). Equation (2.2) is the hydrostatic relation, introducing buoyancy

b = −gρ/ρ0. In the buoyancy budget (2.3), the advection of buoyancy is divided into

a horizontal and a vertical part. This is an allowed simplification, when horizontal
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2. Methods

buoyancy gradients are small compared to the vertical gradient and when the vertical

velocity w is small compared to horizontal velocities. The vertical buoyancy gradient is

expressed here by the Brunt–Väisälä frequency N =
√

∂b
∂z

. These conditions are valid

almost everywhere in the ocean with exception of the surface mixed layer. The last

equation (2.4) is the continuity equation in an incompressible fluid.

To separate the slowly varying circulation from the short-term circulation, the variables

are divided into a mean part and a perturbation part x = x + x′. The perturbation

part vanishes, when applying the temporal mean operator x′ = 0. When applying the

operator on a product of two or more perturbation variables, the result represents a

correlation term, which usually does not vanish, e.g. x′x′ 6= 0 or x′y′ 6= 0. Applying on

the momentum and the buoyancy equation yields

∂uh
∂t

+ uh · ∇huh + f ūh¬ +∇hp = −u′h · ∇hu′h (2.5)

∂b

∂t
+ uh · ∇hb+ wN2 = −u′h∇h · b′ (2.6)

On the right-hand-side of the equations, the correlation terms show up, which need to

be parametrized if they can not be resolved by the model.

Using the identity u′h · ∇hu′h = ∇h · u′hu′h, the terms can be written as a divergence of

a flux term. The term u′hu
′
h, showing up in the momentum equation (2.5), is the eddy

momentum flux. The term u′hb
′, from the buoyancy equation (2.6), is the eddy buoyancy

flux.

2.2. Isopycnal mixing

Mixing of material properties by eddies in a stably stratified fluid occurs mainly along

isopycnals. Vertical density gradients are usually much larger in the ocean than hori-

zontal gradients with exception of the oceanic mixed layer. Thus isopycnals are usually

horizontal. Gent and McWilliams (1990) propose a decomposition of eddy fluxes along

the horizontal gradients. Following Killworth (1997) and Eden (2011) the horizontal

buoyancy flux in the buoyancy budget can be decomposed as
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2.2. Isopycnal mixing

Figure 2.1.: The effect of the parametrization by Gent and McWilliams in an idealized

model. Shown are mean isothermes in ◦C (in this case proportional to the

mean buoyancy b) in colors and the contour lines of the streamfunction

of the eddy-driven velocity for three subsequent times (from Olbers et al.

(2012))

u′hb
′ = −κb∇hb+ νb∇¬b (2.7)

The first term on the right-hand-side of equation (2.7) is a downgradient term related

to the removal or production of mean available potential energy by the eddy induced

circulation. A positive κb would cause a release of mean available potential energy. If

κb = 0, the eddy induced circulation has no effect on the mean circulation. The second

term represents a skewness diffusivity along the isopycnals. The physical meaning of

νb is, that it is a streamfunction for eddy advection of mean isopycnal thickness (Eden

et al. (2007)). It is not included in the initial parametrization by Gent and McWilliams

and has no influence on the balance of potential energy, but it becomes important

regarding passive tracers. The flux term in equation (2.6) can be interpreted as a mean

vertical eddy-driven advection velocity term we = ∇hu′hb
′/N2, which can be added to

the background velocity to form the residual vertical velocity w∗ = w + we. Replacing

the flux term in the buoyancy budget, equation (2.6) becomes

∂b

∂t
+ uh · ∇hb+ (w + we)N2 = 0 (2.8)
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2. Methods

with

we =
∇hu′hb

′

N2
= ∇h

−κb∇hb

N2
+
νb∇¬b

N2

 = ∇h(−κbs + νb s¬) (2.9)

, in which s = −∇hb/N
2 is the isopycnal slope vector. The horizontal eddy buoyancy flux

essentially produces a vertical advection of background buoyancy. Diapycnal diffusion

of buoyancy does not occur, so the volume of isopycnals does not change over the whole

domain. This effect is also called thickness diffusion, because the vertical thickness of

the isopycnals is redistributed in the process (see fig.2.1). A dominant downgradient

flux, as expected in most domains, leads to a flattening of isopycnal slopes and therefor

a decrease of available potential energy.

Using the continuity equation ∂we/∂z+∇ueh = 0 on the eddy-driven velocity, we receive

its horizontal part.

ueh = −∂/∂zu′hb
′

N2
= ∂/∂z(κbs− νb s¬) (2.10)

2.3. Mixing in the momentum equation

The parametrization of the flux term u′hu
′
h in the momentum equation (2.5) analogous

to the parametrization in chapter 2.2 fails, since eddy momentum fluxes do not have a

clear relation to the mean momentum gradient. One flux, that is expected to be related

to its mean gradient, is the eddy potential vorticity (PV) flux. The quasi-geostrophic

potential vorticity is given by

q = βy +∇¬ · uh +
∂

∂z

(
f

N2
b

)
(2.11)

The terms represent planetary vorticity, relative vorticity and a stretching vorticity term,

respectively. From equation (2.11) an eddy PV flux can be derived.

uh¬
′q′ = ∇ · u′hu′h − fuh¬

e +∇h

(
b′2

2N2
− |u

′
h|2
2

)
(2.12)
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2.4. Linear stability analysis

This flux is already rotated by 90◦ (see Olbers et al. (2012) p.392 for the derivation of this

term). Using (2.12) to replace the divergence of eddy momentum flux, the momentum

equation can be written as

∂uh
∂t

+ uh · ∇huh + fuh¬
∗

= −∇hp+∇h

(
b′2

2N2
− |u

′
h|2
2

)
− u¬

′
h
q′ (2.13)

Like the eddy buoyancy flux, the eddy PV flux can be composed into a horizontal

downgradient term and a term along constant vorticity.

u′q′ = −κpv∇hq + νpv∇¬q +∇¬Θ (2.14)

The term Θ = ∇h

(
b′2

2N2 −
|u′h|2

2

)
in (2.14) originates from the eddy vorticity flux equation

and therefor has to be included in the parametrization of u′q′. Using (2.14) in the

momentum equation provides the equations, that include both parametrizations

duh
∗

dt
+ fuh¬

∗
= −∇hp+ κpv∇¬q + νpv∇hq +∇hΘ (2.15)

∂b

∂t
+ uh · ∇hb+ w∗N2 = 0 (2.16)

These two equations represent the different approaches of implementing the effect of

the meso-scale circulation in a mean model. The first one is the implementation in the

mean momentum equation by parametrizing eddy PV fluxes following Marshall (1981)

and the second one is the implementation by parametrizing eddy buoyancy fluxes in the

mean buoyancy equation following Gent and McWilliams (1990). The only variables,

that still need to be obtained to close the parametrizations are either κpv and νpv or κb

and νb.

2.4. Linear stability analysis

Meso-scale eddy fluxes can be obtained from the linear wave solution ψ′ of the perturbed

quasi-geostrophic flow (Killworth (1997), Eden (2011)). Quasi-geostrophy is a further
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2. Methods

simplification of the governing equations (2.1 - 2.4), by supposing vanishing mean vertical

velocity and vanishing mean horizontal momentum advection. The second assumption

relies heavily on the relation between the term f ūh¬ in the mean momentum equation

(2.5), that describes the balance of the flow by the Coriolis-force and the term uh ·∇huh,

that describes horizontal advection. Only if the first term dominates, the mean flow is

in geostrophic balance and can be described by a quasi-geostrophic streamfunction ψ.

Thus at the equator, where f → 0, quasi-geostrophy is not applicable. The quasi-

geostrophic streamfunction ψ = Ψ +ψ′ is decomposed into a steady basic state Ψ and a

perturbation ψ′. The properties of the flow, that can be derived from the streamfunction,

are the mean horizontal velocities uh = ∇¬Ψ, the mean buoyancy b = f∂zΨ and the

mean potential vorticity q = ∇2Ψ + ΓΨ + βy. Introduced here is the vertical operator

Γ() = ∂z(f
2N−2∂z()) for the stretching term in the vorticity equation. The properties

of the perturbed flow can be derived in the same way: u′h = ∇¬ψ
′, b′ = f∂zψ

′ and

q′ = ∇2ψ′+Γψ′. In absence of friction quasi-geostrophic potential vorticity is a conserved

quantity. Linearized around a basic state that satisfies uh · ∇q = 0 and ignoring terms

of second order we obtain

∂tq
′ + uh · ∇q′ + u′h · ∇q = 0 (2.17)

Considering a flat surface (rigid lid) at z = 0 and a flat bottom at z = -h, the boundary

conditions are

(∂t + uh · ∇)∂zψ
′ = ∂zuh · ∇ψ′ at z = 0,−h (2.18)

If we account for bottom slopes and internal friction the equations are slightly modified

(see Appendix). Using the local approximation, solutions of equation (2.17) are waves

ψ′ = ψ0φ(z)e−i(ωt−kxx−kyy) on a horizontal plane with a vertical amplitude function φ(z)

that has to satisfy

Γφ =

(
k2 +

β̃

c− Ũ

)
φ (2.19)

in the interior and

(Ũ − c)dφ
dz

= φ
dŨ

dz
at z = 0,−h (2.20)
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2.5. A closure for eddy diffusivities

at the boundaries. The phase velocity is given by c = ω/k, with k = |k| and Ũ = n ·uh,

β̃ = −n · ∇¬q. The later are the projection of the background velocity respectively vor-

ticity curl in direction of the wave propagation n = k/k. The boundary conditions

correspond to vanishing vertical perturbation velocities at the boundaries. This eigen-

value problem can be discretized in the vertical and be solved numerically. The numeric

solution is analogous to the one from Smith (2007) and can be found in the Appendix.

The eigenfunctions φ(z) and eigenvalues ω of the solution might both be complex. For

Im(ω) > 0, the wave amplitude grows exponentially in time. These waves are regarded

to dominate the observed wave field. Growing waves can be found for many combi-

nations of kx and ky. Multiple local maxima in wavenumber-space can be related to

different structural vertical modes (Beckmann (1988), Tulloch et al. (2011)).

2.5. A closure for eddy diffusivities

The fastest growing wave can be determined for each vertical oceanic profile. It is

characterized by its growth rate ωi = Im(ω), its phase speed c, its pair of horizontal

wavenumbers kx, ky and its vertical structure φ. The eigenmode φ is complex attributing

a non-dimensional wave amplitude and a phase shift to every depth level of the profile.

Properties of the flow can be derived from the perturbation streamfunction ψ′ in the

same manner as from the geostrophic stream function Ψ. The eddy buoyancy flux can

be calculated as a cross-correlation of the perturbation velocity and the perturbation

buoyancy.

u′hb
′ = ∇¬ψ

′ · f∂zψ′ = −
ψ2

0

2
k¬fRe(iφ∂zφ

∗) (2.21)

The overbars denote an average over a wave cycle, φ∗ is the complex conjugated eigen-

function. We can define an isotropic buoyancy diffusivity Kb
iso and calculate the diffu-

sivities along the mean gradient and along the isolines of b.

Kb
iso =

ψ2
0

2
kfRe(iφ∂zφ

∗)|∇b|−1 (2.22)
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2. Methods

κb = Kb
iso

n¬ · ∇b

|∇b|
, νb = Kb

iso

n · ∇b
|∇b|

(2.23)

If wavenumber and mean buoyancy gradient are perpendicular, νb would vanish and

κb = Kb
iso. The eddy vorticity flux can be calculated using equation (2.19)

u′hq
′ = ∇¬ψ

′ · β̃/(c− Ũ) · ψ′ = −ψ
2
0

2

Im(c)|φ2
n|

|Ũ − c|2
k¬β̃ (2.24)

and vorticity diffusivities by

Kpv
iso =

ψ2
0

2
k

Im(c)|φ2
n|

|Ũ − c|2
(2.25)

κpv = Kpv
iso

(n¬ · ∇q)
2

|∇q|2
, νpv = Kpv

iso

(n · ∇q)(n¬ · ∇q)

|∇q|2
(2.26)

For stable modes the complex part of the phase speed c is be zero, so Kpv
iso = 0. For

growing waves (ωi > 0), vorticity diffusivities are always positive. This is not the case

for buoyancy diffusivities.

A crucial point of the closure remains the amplitude ψ0 of the perturbation wave stream-

function. It has to consist of a typical lengthscale and a typical timescale for the eddy

circulation.

Following Killworth (1997) and Eden (2011), the amplitude of the linear solution depends

on the imaginary part of the phase speed ci = ωi/k and the wave length Lbci = 2π/k of

the fastest growing mode. By including the growthrate ωi, the amplitude of the fastest

growing waves is largest. Eden (2011) also introduces a non-dimensional scaling pa-

rameter Kw, which is of order one. The scaling parameter is representing the relation

between the lengthscale of the instable wave and the final eddy lengthscale. The eddy

lengthscale is a result of turbulent processes. It is usually larger than the lengthscale of

the instable wave due to the inverse turbulent cascade in the meso-scale regime. In this

study ψ0 = Kw ciLbci is used for the amplitude of the perturbation streamfunction, with

Kw = 3.
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2.6. Conditions for baroclinic instability

2.6. Conditions for baroclinic instability

When simplifying equation (2.19) by looking at a pure zonal flow U, it becomes

∂

∂z

(
f 2

N2

∂φ

∂z

)
+

φ

U − c

(
∂q

∂y
− k2(U − c)

)
= 0 (2.27)

Multiplication with φ∗ and integration over z results in a expression for the imaginary

part given by

ci

(∫ 0

−h

|φ2|
|U − c|2

∂q

∂y
dz +

[
f 2

N2

|φ2|
|U − c|2

∂U

∂z

]0

−h

)
= 0 (2.28)

with the second part coming from the boundary conditions of equation (2.20). For an

instable solution (ci > 0) the term in the bracket has to vanish. Conditions of instability

can be clasified as Eady-type, Charney-type and Phillips-type instabilities referring to

the works of Eady (1949), Charney (1947) and Phillips (1954). They all focus on different

necessary conditions for instability.

• Eady-type instabilities

Eady considered the case ∂q
∂y

= 0, a vanishing gradient of potential vorticity and

a constant stratification N. This implies a constant vertical shear of the velocity,

∂U
∂z

= const. The condition for instability of the Eady problem depends only on the

boundary conditions and can be solved analytically. The solution is an overlapping

of two boundary trapped waves.

• Charney-type

If ∂q
∂y
6= 0, Charney-type instabilities occur if ∂U

∂z
has the same sign of ∂q

∂y
at the

surface z = 0 or the opposite sign at the bottom boundary z = −h. The upper

boundary is usually dynamically more important, because velocity shear and PV

gradients are higher at the surface. Thus Charney-type instabilities are mostly

surface trapped instabilities.

• Phillips-type

Phillips-type instabilities occur, if the PV gradient ∂q
∂y

changes sign in the interior.
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2. Methods

Phillips used a two layer model to study these instabilities. In more complex ocean

profiles, PV gradients can change several times in different depths.

In the numeric solution, which implements the boundary condition in the mean PV

gradient, all three conditions for instability are equivalent to a zero crossing of the gra-

dient. An Eady-type instability therefore is characterised by contributions to the PV

gradient at the boundaries of opposite sign, that are the main source of instability. The

fictive zero-crossing occurs at middepth. A Charney-type instability is in this case re-

lated to a zero crossing of the PV gradient near the surface. To clasify the instability,

perturbation waves, which have a streamfunction amplitude that has bottom and sur-

face maxima are called Eady-like instabilities and perturbation waves with an rapidly

decreasing amplitude towards depth are called Charney-type instabilities. Instabilities,

which are the response of interior crossings of the PV-gradient usually have a surface

intensified streamfunction, that decreases slightly with depth. These type of instabilities

are here called Phillips-type instabilities.
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3. Dataset

To produce global maps of instability and diffusivities, the World Ocean Circulation

Experiment (WOCE) Global Hydrographic Climatology is used. The WOCE clima-

tology is based on different kinds of observational studies, described by Gouretski and

Koltermann (2004). It has a horizontal resolution of 0.5◦ and consists of 44 vertical

levels. To remove meso-scale features the data was smoothed with a 1.5◦ running mean.

Geostrophic velocities were computed from the potential density gradients using ther-

mal wind balance with a level of no-motion at the bottom. The results of LSA do not

change with a barotropic background current, so the level of no motion could also be

defined elsewhere. The topography is taken from the WOCE data and smoothed on

2.5◦ to remove small scale patterns. The instabilities are calculated on a 1◦-grid. The

calculated diffusivities are further smoothed with a 3◦ running mean.

A map of geostrophic velocities is shown in fig.(3.1a) to illustrate the dominant cur-

rents. Around the equator, velocities in the real ocean are mostly ageostrophic and can

not be expressed by the thermal wind equation. The presented linear stability analysis

presumes quasi-geostrophy, so results at ±5◦ of the equator are masked as the approxi-

mations are not valid.

A typical lengthscale for geophysical fluid dynamics is the first baroclinic Rossby radius

LRo shown in fig.(3.1b). The size of LRo can be calculated by applying the stretching

operator on the density-profile without considering background currents (see Appendix

A.2). It is the scale of the stable perturbation wave response on an ocean at rest.

The most important variables for baroclinic instability are the vertical shear of geostrophic

velocities and the stratification. The Richardson number Ri = N2/((∂zU)2 + (∂zV )2)
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a

b

Figure 3.1.: (a) Geostrophic velocities [cm s−1] in 150 m depth. (b) First baroclinic

Rossby radius LRo [km]. Zonal means on the right hand side.
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a

b

c

d

Figure 3.2.: Zonally averaged (a) Logarithm of buoyancy frequency N in [lg10(s−1)]. (b)

Vertical shear of zonal geostrophic velocity scaled by the Coriolis parameter

∂zu · |f | in [s−2]. (c) Scaled inverse Richardson number |f | ·
√

Ri in [d−1].

(d) Meridional PV gradient in units of planetary vorticity ∂yq/β. 19



3. Dataset

combines the two variables and is a measure for the baroclinic instability of the ocean.

Figure(3.2) shows zonal averages of stratification, zonal velocity shear, scaled inverse

Richardson number
√
f 2Ri−1 and meridional vorticity gradient. The dominant flow

regimes are apparent in fig.(3.2b). Eastward sheared flow is characterised by positive

vertical shear and mixed shear by a reverse of shear in the upper ocean. Vertical shear

is positive at the surface with exception of the equatorial region. The scaled inverse

Richardson number shown in fig.(3.2c) shows up to two maxima in the vertical, the

surface one related to low stratification in the mixed layer and the interior one related

to strong shears in the interior. Both maxima are sources for baroclinic instability. The

averaged PV gradient also shows a zero crossing beneath the surface and further zero

crossings in the interior.
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4. Results

The Results will be structured as follows. In section one we will look at the instabil-

ity and the diffusivities from simple profiles. We will start from the conditions Eady

solved analytically and add complexity by adding a planetary vorticity gradient, bottom

topography and depth-dependent shear successively. In the second section, results for

examplary profiles from the WOCE climatology are discussed. In the third section, LSA

is applied on the whole WOCE climatology. The horizontal distribution of growthrates

and lengthscales of the perturbation waves is shown. The results are compared to a

simple approach using the Richardson number and LSA without bottom slopes. In the

fourth section, PV- and thickness diffusivities derived from WOCE data are presented.

The results are discussed for different regimes and compared with the conclusions drawn

from the discussion of idealized profiles.

4.1. Idealized Profiles

Before we look at results derived from data, a closer look at the basic concepts and

results of the numeric solution is necessary to understand the abilities of the method.

Linear stability analysis allows to specify general properties of different current systems.

It will be seen, that the latitudinal position and the mean direction of a certain current

already delivers a lot of information about the wave solution and the vertical distribution

of diffusivities.
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4. Results

Figure 4.1.: Numeric solutions for the Eady profile without (straight) and with β

(dashed). Shown are (i) the maximum growthrate ωi in dependence of the

zonal wavenumber. The wavenumber is scaled by the first baroclinic Rossby

radius LRo. (ii) The background velocity U (blue) and the real phase speed

c (red) of the perturbation wave, and the background density. (iii) The non-

dimensional eigenfunction amplitude of the fastest growing mode. (iv) The

thickness diffusivity κb and (v) PV diffusivity κpv derived from the fastest

growing mode. The maximum growthrate is ωi = 0.064d−1 ≈ 0.1 U0

LRo
.

Eady’s conditions We start with the simple case analytically solved by Eady (1949).

Eady looks at a pure zonal flow with a constant shear, with the highest velocity U0 at the

surface. The stratification is also constant and the planetary vorticity gradient β is zero.

The numerical solution is shown in fig.(4.1). All long zonal waves with wavenumbers

kx < 0.76 LRo are unstable. The most unstable wave with an imaginary growth rate of

ωi ≈ 0.1 U0

LRo
lies at kx ≈ 0.5

LRo
. Thus the lengthscale of the baroclinic instability wave is

Lbci = k−1 ≈ 2LRo. The wave amplitude is largest at the surface and the bottom with

a phase shift of 180 degrees between them.

The vertical eigenfunction is a response on the boundary contribution to the potential

vorticity gradient at surface and bottom. These contributions to the PV gradient result

from the boundary conditions and are of same magnitude and opposite sign in this

simple case. To maintain the kinematic condition,

∫ 0

−h
u′hq

′dz = −
∫ 0

−h
κpv · ∇hq = 0 (4.1)
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4.1. Idealized Profiles

a b

Figure 4.2.: Dependency of (a) Growthrate ωi and (b) wavelength Lbci of the fastest

growing Eady mode shown in fig.(4.1) on the relation between β and the

approximated stretching vorticity gradient QSt
y . The dashed line is the so-

lution for β = 0.

κpv thus needs to have the same value at surface (z = 0) and at bottom ( z = −h ). The

most unstable eigenfunction for this condition is symmetric to mid-depth. The kinematic

condition (4.1) assures, that the instability process just redistributes momentum and is

no source for momentum. The phase speed of the wave is c = U0/2. The resulting

thickness diffusivity is vertically constant, the PV diffusivity is symmetric around mid-

depth and has a maximum at the so-called steering level, where U − Re(c) = 0.

Planetary vorticity The first step towards a more realistic representation of ocean con-

ditions is the inclusion of a planetary vorticity gradient β 6= 0 as discussed by Phillips

(1954). The first effect of a nonzero PV gradient is a stabilization of long waves and

a destabilization of short waves (see dashed lines in fig.(4.1)). A threshold of vertical

shear exists, depending on β, which needs to be exceeded for an instability to occur.

This differs from the Eady-case with β = 0 , where instability exists as long as velocities

are vertically sheared.

The change of properties of the wave solution is a response on the different PV gradient

and on the additional Doppler shift of the phase speed by β. An eastward propagating

perturbation wave is slowed down by the planetary vorticity gradient (see fig.(4.1ii)).

As a consequence U − Re(c) = 0 occurs at increased depth, which results in a deeper
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maximum of PV diffusivity. The depth integrated meridional PV gradient does not

vanish due to the depth-independent β. To still maintain the kinematic condition in

equation (4.1), the PV diffusivity has to increase towards depth. Consequences are a

depth intensified wave amplitude and a depth intensified thickness diffusivity. Instability

of an eastward mean current would thus lead to an surface intensification of the current

as gradients are faster reduced in depth.

For the opposite case of a mean westward current, the β-contribution leads to a sur-

face intensification of diffusivities and thus a stronger remove of gradients in the upper

ocean. The additional Doppler shift increases the westward phase velocity, leading to a

near-surface maximum of PV diffusivity. For a meridional mean current with constant

shear, the planetary vorticity gradient has no influence on the solution.

The meridional stretching vorticity for constant shear and stratification can be approx-

imated by QSt
y = f 2/N2 · U0/h

2, with U0 being the velocity at the surface and h the

local depth. Figure(4.2) shows how the relation between the stretching and planetary

vorticity changes the wave solution. The stretching term decreases towards the equator

due to the decreasing Coriolis term f 2, while the β term increases. Thus the trends

shown in fig.(4.2) can be also be interpreted as a lateral dependency of growthrates and

lengthscales of the Eady mode.

The decrease of growthrates with latitude can be mainly linked to the decreasing stretch-

ing term. The lengthscale on the other hand just depends on the relation between β

and QSt
y . It can be seen in fig.(4.2), that the lengthscale of the wave decouples from the

local Rossby radius at the latitude, where |QSt
y | < β.

As seen in fig.(3.2) the world ocean can be roughly divided in two regimes. A higher lat-

itude regime polewards of about 35 degrees, where strong PV gradients persist through

the whole water-column, and a low latitude regime, where the interior PV gradient is

close to the planetary vorticity gradient β, with exception of a shallow surface layer.

From this simple example one would expect wave solutions with a wavelength linked

to the Rossby radius for the higher latitudes and solutions with wavelengths decoupled

from the Rossby radius in low latitudes. Although the PV gradients in the ocean are a
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a b

c d

Figure 4.3.: Dependency of (a,c) Growthrate ωi and (b,d) wavelength Lbci of the fastest

growing Eady mode on the contribution of the (a,b) cross-stream topo-

graphic slope h∗y and (c,d) the along-stream topographic slope h∗x normalized

by the approximated stretching-PV gradient QSt
y . Eastward Flow U > 0 and

β = 0 (blue). Eastward Flow U > 0 and β 6= 0 (red). Westward Flow U < 0

and β 6= 0(red dashed).

lot more complex than Eady conditions, we will see that the decoupling from the Rossby

radius is also observed in the full analysis.

Sloping topography Topography plays an important role for the mean ocean circula-

tion, as all non-zonal currents are flowing along a topographic boundary. It also plays

a role in the instability of a current. Perturbation waves can no longer propagate freely

but are constraint by a horizontal boundary. In the local problem it is not trivial to

include topographic constraints. The condition for the local approximation is that the

ocean is horizontally homogeneous. A way to include a topographic constraint is to

change the lower boundary condition from a vanishing vertical velocity to a vanishing
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velocity perpendicular to the bottom slope. Following Smith (2007) the bottom bound-

ary condition can also be included in the potential vorticity of the bottom layer. (see

Appendix A.5)

In the simple Eady case without a planetary vorticity gradient, a topographic contri-

bution to the PV gradient of h∗y = hy · f/h ≥ QSt
y would prevent a zero-crossing of the

PV gradient and consequently prohibit an instability to arise (see fig.(4.3a)). A slope

of h∗y > 0 corresponds to a topographic obstacle at the left side of the current on the

northern hemisphere and on the right side on the southern hemisphere.

A topographic slope in the opposite direction reduces growthrates and lengthscales al-

most linearly and is approaching stability at around h∗y <= −3 ·QSt
y , but has no critical

value for which the growthrate vanishes. An interesting feature of the numeric solu-

tion is, that the growthrate is not highest for a flat bottom, but for a slightly sloping

bottom of around half the interior PV gradient. In this domain wavelengths are also

larger than for a flat bottom and consequently diffusivities have a higher amplitude as

κ ∼ φ2
0 ∼ ω2

iL
2
bci.

When reversing the current direction, instability waves can arise above the critical point

of h∗y ≥ QSt
y . These weakly growing waves are a response of the zero crossing between

the negative surface PV gradient and the positive interior PV gradient caused by β.

A topographic slope hx along the zonal mean current always leads to a further destabi-

lization of the flow as shown in fig.(4.3c). In case of an along-stream topographic slope

the solution is independent of the slope’s sign. An obstacle upstream would result in

the same change of properties of the instable wave as an obstacle downstream. The

increase of growthrate and lengthscale by an along-stream topographic slope is larger

for westward currents.

Studying Eady’s condition under influence of a planetary PV gradient and topographic

boundary conditions reveals, that the values predicted by Eady for growthrate and

lengthscale are indeed valid for a constant interior PV gradient large in relation to β

and ∇h∗. Both parameters however are able to significantly change the magnitude of

growthrate and lengthscale of the perturbation waves, if they are larger or at comparable
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value to the PV gradient.

Depth-dependent PV gradients As neither shear nor stratification are constant in

the ocean, PV gradients have a much more complex structure than the constant or van-

ishing PV gradients in the Eady problem.

A still idealized ocean profile would consist of a strongly sheared and strongly strati-

fied upper ocean and a weakly sheared and weakly stratified lower ocean. This can be

approximated by exponential functions. Some differences to the constant cases can be

found and need to be explained to better understand the effects in the real ocean.

Figure(4.4a) shows eastward and westward mean flow. The instability of the eastward

current produces similar diffusivities as the Eady mode, the instability of the westward

current produces surface-intensified diffusivities. The growthrate of the westward cur-

rent is almost twice as large as the growthrate of the eastward current. From the different

vertical distributions of thickness diffusivity it becomes evident, that the baroclinic in-

stability process tends to produce surface intensified eastward zonal currents and bottom

intensified westward zonal currents. These currents are the most stable. On the other

hand bottom intensified eastward currents and surface intensified westward currents are

highly unstable. Examples in the real ocean are the Gulf Stream and Kuroshio exten-

sions for surface intensified eastward mean currents. The subtropical westward return

currents are examples for surface intensified westward mean currents.

Northward and southward currents (fig.(4.4b)) produce equal time- and lengthscales of

instable waves. The growthrate is independent of the direction, because the contribution

by the planetary vorticity gradient is perpendicular to the flow. The diffusivities are also

equal. The difference in the meridional profiles is, that skewness diffusivities νb and νpv

are created by the instability.

Skewness diffusivities lead to an advection of properties along the mean isopycnal layers.

These diffusivities are induced, when the wave propagation is not perpendicular to the

mean gradients of either buoyancy or PV, as shown in equations (2.23) and (2.26). In

the simplified case shown in fig.(4.4b), the angle between mean buoyancy gradient and

wave propagation is a result of the vanishing interior zonal PV gradient at depth and
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a

b

Figure 4.4.: Numeric solutions for four different idealized current profiles.(a) Zonal Cur-

rents. (b) Meridional Currents. Shown are (i) the maximum growthrates

ωi in horizontal wavenumber space. The wavenumbers are scaled by the

local first radius of deformation LRo. The black (green) cross marks the

fastest growing mode corresponding to the straight (dashed) lines in the

other plots. The maximum growthrates are ωi = 0.025d−1 (eastward),

ωi = 0.041d−1 (westward) and ωi = 0.038d−1 (north/southward)(ii) The

background velocities U (blue) and V(green), the real phase speed c (red)

of the perturbation wave and density . (iii) The non-dimensional amplitude

of the vertical eigenfunction of the fastest growing mode. (iv) The thickness

diffusivity κb and (v) PV diffusivity κpv (blue) and skewness diffusivities νb,

νpv (green) derived from the fastest growing mode.
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the constant meridional gradient β.

The vertically changing relation between interior PV gradient and β lead to a slight rota-

tion of the direction of the total gradient with depth. In profiles of increased complexity

the vertical rotation of the PV gradient can also originate from depth dependent merid-

ional and zonal velocities. The isopycnal thickness advection νb is creating a meridional

mean buoyancy gradient and thus inducing a zonal mean current and a zonal eddy-

induced advection. The instability of northward and southward currents would both

lead to an eddy-induced advection towards east, a consequence of the planetary vortic-

ity gradient.

4.2. Profiles from observational data

In the ocean, Tulloch et al. (2011) claim that most baroclinic instabilities can be iden-

tified as Philips-type instabilities, that means the PV gradient has a sign-change in

the interior, and that Charney instabilities, which represent subsurface or shallow sign-

changes, are only dominant in westward mean flows. Analogous to their work different

profile-types from the WOCE climatology are chosen to show the influence on the solu-

tion of LSA.

Antarctic Circumpolar Current profile The first profile shown in fig.(4.5a) is a profile

from the ACC (53◦ S, 150◦ W), representing mean eastward flow. The conditions in

the ACC are close to Eady’s conditions as shear and stratification have a low vertical

dependence. The instability impacts the whole water column, the thickness diffusivity is

almost constant and the PV diffusivity increases towards depth with a local maximum

at the steering level. The lengthscale of the wave is almost equal to the lengthscale

Lbci ≈ 2LRo of the Eady solution. The topographic slope has a large influence on the

growthrate and the magnitude of diffusivities. Figure(4.6) shows the dependence of

growthrate and lengthscale of this specific profile on the local slope. Like the Eady

profile, the mean eastward current is stabilized by a topography sloping towards the
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right side of the current.

Gulf Stream profile The profile from the GS (37.5◦ N, 61.5◦ W) shown in Fig.(4.5b)

is characterised by strong zonal and meridional velocities. The zero-crossing of the PV

gradient is at a lower depth. The lengthscale is a little smaller than the Eady-scale,

but still close. The diffusivities are similar to the ones shown in fig.(4.4b) for a pure

northward flow. As meridional currents are not stabilized by the planetary PV gradient,

they tend to dominate in the instability process, if they have a similar magnitude as the

zonal eastward velocity. Like on the ACC profile, the topographic stabilization has a

large effect. As shown in fig.(4.6), the current is also stabilized by a slope perpendicular

to the current-axis.

Mixed shear profiles Figure(4.5c) shows a profile for a mixed shear (15◦ S, 180◦ E).

The dominant zonal velocity is concentrated in the upper 1000 m, the buoyancy gra-

dient beneath is almost zero. The velocity shear and the PV gradient change sign at

approximately 150 m depth. Two different maxima in the wavenumber space indicate

two different types of growing solutions . Dominant in this profile is a wave-solution

with a lengthscale several times smaller than the local Rossby radius. The vertical

eigenfunction shows, that this wave has an amplitude confined to the upper 200 m. The

instability can either be attributed to the near-surface zero crossing of the PV gradient

or to an interaction of the interior PV gradient with the surface gradient. Diffusivities

are also vanishing underneath 200 m and are one order of magnitude smaller than in the

profiles from the ACC and the Gulf Stream.

A comparison with a profile, where the large scale instability is dominating (see fig.4.5d),

shows that the mode in fig.(4.5d) is related to the interior zero-crossing (Phillips-

type) and the mode in fig.(4.5c) to the interaction with the surface gradient (Charney-

type). The diffusivities from the Phillips-type instability are much larger than from the

Charney-type instability. Depending on wich mode dominates, diffusivities may vary in

one order of magnitude. This explains a lot of the noise to be observed in the global

maps. Topographic slopes have very little influence on the two equator-near profiles.
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a

b

c

d

Figure 4.5.: LSA solution for profiles from WOCE data at (53S/150W), (37,5N/61.5W),

(15S/180E), (15N,180E). Properties shown are the same as in fig.(4.4).

The black(green) cross marks the pair of wavenumbers with maxi-

mum growthrate with(out) a flat bottom boundary condition and the

straight(dashed) lines mark the derived properties. The red line in the ve-

locity profile marks the zonal phase-speed and direction of the perturbation

wave. The yellow line marks the depth of the approximate zero-crossing of

the meridional PV gradient.
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Figure 4.6.: Dependency of growthrate (top) and lengthscale (bottom) on the local to-

pographic slope ∇h [10−2%] of the ACC profile shown in fig.(4.5a) (left)

and the GS profile of fig.(4.5b) (right).The cross marks the real topographic

slope.
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4.3. Global eddy lengthscales and growthrates

The magnitude of eddy diffusivities is directly linked to the growthrate and the length-

scale of the fastest growing mode. The idealized profiles in the first part of the results

reveal the important variables for these two wave-properties . In the Eady profile the

magnitude of the stretching PV gradient QSt
y is important for the growthrate and the

relation between β and QSt
y is important for the lengthscale. For a depth-dependent

PV gradient, β has an influence on the growthrate as well. Surface intensified eastward

sheared profiles are more unstable than surface intensified westward sheared profiles.

Another variable that determines the magnitude of growthrate and lengthscale of the

fastest growing mode is the topographic slope. A topographic slope can either stabilize

or destabilize the background current. Example profiles from the WOCE climatology

further show that the complex structure of PV gradients in real ocean profiles can cause

the growth of different modes. These different modes usually have different lengthscales

and vertical eigenfunctions and can be roughly divided into Charney-type, Phillips-type

and Eady-type modes.

To understand how the different variables influence growthrates and lengthscales on a

global scale, we apply linear stability analysis on the whole WOCE climatology. We

computed results with and without a bottom contribution of the local topographic slope

to receive information about the dependency on the slope.

Furthermore we compare the results from LSA with the approximated Eady growthrate

for non-constant shear and stratification and with an approximate lengthscale. The

difference between the three different results visualizes the consequences of increased

complexity arising from zero crossings of the PV gradient, planetary vorticity and to-

pographic stabilization. The approximate solution is chosen, because it represents a

popular method to receive time- and lengthscales for baroclinic instability with low

computational effort.

Fig.(4.7a) shows the global map for the maximum growthrate retrieved with linear sta-

bility analysis. The most unstable areas are along the Antarctic Circumpolar Current

and along the mayor boundary currents. Other unstable spots can be located in the
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polar North Atlantic. The lengthscale of the fastest growing mode is shown in fig.(4.8a).

The noisiness of the horizontal dependency of lengthscales is a result of the different

dominant modes of different lengthscale as seen in the fig.(4.5). The zonally averaged

values actually provide a better overview over consistent features. Lengthscales of unsta-

ble waves are larger than the Rossby radius polewards of 40-50 degree and much smaller

towards the equator. Fig.(4.10) shows that the zonal mean lengthscale is quite constant

and lies between 10 and 20 km polewards of 20 degree. Between 20 and 10 degrees the

lengthscales have a local maximum, which can be linked to mixed shear return currents

of the subtropical gyres.

Influence of topography The maps of growthrate (fig(4.7b))and lengthscale (fig(4.8b))

that result for LSA with flat bottom show a systematic modification to the full solution.

Fig.(4.9) shows the differences between the two results. As seen in the example profiles

in fig.(4.5) the inclusion of a topographic slope in the lower boundary condition leads in

most cases to a suppression or weakening of growing modes. The effect is strongest in

the ACC, where large areas of the mean current seem to be stabilized by topography.

In the northern hemisphere most notably the Labrador current and the Gulf Stream be-

come more stable. Zonally averaged growthrates and lengthscales show that topographic

slopes have the largest influence polewards of 40 degree. In this region growthrates and

lengthscales are reduced by an average of 10-20 percent. In mid- and low latitudes on

the other side, topography often leads to a slight increase of growthrate and lengthscale.

This indicates that the relation between interior PV gradient and topographic gradient

is in the area, where 0 < ∇h∗ < ∇QSt or that the mean flow faces obstacles along its

mean direction.

An approximate solution Following Smith (2007) the Eady growthrate

ω2
E =

1

h

∫ 0

−h
(f 2Ri−1)/6 dz

can be estimated using the local Richardson number. The Eady growthrate is the

growthrate of the fastest growing Eady mode, that is the wave solution for depth-
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a

b

c

Figure 4.7.: (a) Maximum growthrates ωi [d−1] from LSA. (b) Same but for a local flat

bottom (c) Eady growthrate ωE. On the right hand side: zonally averaged

growthrates (black) and depth averaged zonal mean geostrophic velocities

[cms−1] (green).
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a

b

c

Figure 4.8.: (a) Scaled radius Lbci/LRo of the fastest growing mode and the zonal mean.

(b) Same but for a local flat bottom (c) Scaled approximate lengthscale Lbc.
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a

b

Figure 4.9.: Difference between the solution of LSA with flat bottom shown in

fig.(4.7a,4.8a) and the solution with real topography shown in fig.(4.7b,4.8b).

(a) Max growthrate [d−1].(b) Wavelength of fastest growing mode [km]. Pos-

itive(negative) values denote an increase(decrease) by adding sloping bottom

boundaries. On the right hand side are zonal mean reductions in percent of

the value for a flat bottom.
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averaged shear and stratification. The vertical structure of the Eady mode is shown

in fig.(4.1).

The growthrate of the Eady mode is neither modified by the influence of topography nor

by the influence of β. However, the Eady growthrate is often used to quantify baroclinic

instability in the ocean because it requires little computational effort. By comparing

the Eady growthrate with the growthrate from linear stability analysis, we can quantify

improved display of baroclinic instability by LSA.

The Eady growthrate is shown in fig.(4.7c). It can be best compared to fig.(4.7b), as

we already discussed the influence of topographic slopes, that is the difference between

fig.(4.7a) and fig.(4.7b).

Overall the Eady growthrate seems to be a good approximation for the LSA-growthrate.

The regions of highest growthrate agree. The systematic difference can be best seen in

the zonally averaged growthrates. The Eady growthrates are higher in high latitudes

and lower in low latitudes. This difference can probably be largely explained by the

influence of the β-effect on surface intensified shear as shown in fig.(4.4a).

The consequences of the β-effect are a zonal mean reduction of the growthrate by around

20% in the eastward current regimes polewards of about 40 degrees and an increase by

around 50% in the westward currents equatorwards of 25 degrees. The different depth

dependencies of shear and stratification in these two regime certainly influence the mag-

nitude of the difference between Eady- and LSA growthrates as well, but the influence

of the β-effect gives already a well-defined explanation.

To calculate an amplitude of eddy diffusivities from approximated values, we are also in

need of an approximated lengthscale.

An estimate of the baroclinic instability lengthscale is the eddy transfer length Lbc.

Following Eden (2007) Lbc can be properly represented by the minimum of the first

baroclinic Rossby radius of deformation LRo and the Rhine’s scale LRhi.

Lbc = min(LRo, LRhi)

The Rhine’s scale normally depends on the eddy kinetic energy. For unknown eddy

kinetic energy, it can be approximated by LRhi = ωE/β (Liu et al. (2012)). The eddy
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Figure 4.10.: Zonally averaged lengthscales of the local first baroclinic Rossby radius LRo

(green). Lbci from LSA with bottom slopes (straight blue). Lbci from LSA

with flat bottom (dashed blue). The approximate solution Lbc (red).

transfer length is shown in fig.(4.8c).

We see that the overall relation between the lengthscale and the baroclinic Rossby radius

is similar to the one received with LSA. The horizontal distribution is much smoother

than the lengthscale from LSA, because the switch between different modes with different

wavelength does not occur. As shown in fig.(4.10) the lengthscale Lbc is an underestima-

tion of the lengthscales from LSA in low latitudes, but fits quite well in high latitudes.

We can combine both Eady growthrate and eddy transfer length to calculate the am-

plitude ψ0 of eddy diffusivities. The main consequence for the amplitude ψ0 of eddy

diffusivities would be a large overestimation in high latitudes and an underestimation in

low latitudes in comparison to an amplitude constructed with the time- and lengthscales

from LSA.
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4.4. Eddy diffusivities

Figure 4.11.: Amplitude ψ0 [m2s−1] of the streamfunction of the fasted growing wave.

Note the nonlinear color axis. On the right hand side are zonally averaged

values compared with zonally averaged values for the flat bottom case

(dashed line).

In the following section, eddy diffusivities are calculated according to equation(2.23)

and equation(2.26) for the WOCE climatology using the results from LSA with topo-

graphic slopes. Recent closures are based on the Eady growthrate and an approximate

lengthscale and are either vertically constant (Visbeck et al. (1997)) or relate the vertical

dependency to the Richardson number (Eden and Greatbatch (2008)). The advantage

of eddy diffusivities computed with LSA is not only the inclusion of β and topographic

stabilization, but also different depth-structures for PV diffusion and thickness diffusion.

LSA also delivers the direction of the wave propagation, that allows to specify the skew-

ness diffusivities νb and νpv.

All diffusivities depend on the amplitude ψ0 = 2πKwciLbci of the perturbation stream-

function and differ only in their vertical structure. The magnitude of ψ0 is shown in

fig.(4.11). The amplitude is largest in the westward currents between 10◦ and 20◦,

linked to the larger lengthscale in this region rather than to large growthrates. In the

subtropical and subpolar ocean, where the lengthscales are quite constant, areas of a

large amplitude are linked to areas of high growthrate, for example in the GS and along

40



4.4. Eddy diffusivities

the ACC. In the following sections the detailed vertical distribution of meso-scale eddy

diffusivities will be shown on maps for certain depths and for chosen transects.

4.4.1. PV diffusivity

Figure(4.12) shows PV diffusivity in 150 m, 500 m and 1500 m depth. Even though

growthrates in the Gulf Stream and the Kuroshio are high, the diffusivities are quite

low. On the other hand diffusivities in the Southern Ocean are high coinciding with

high growthrates. Some areas in the ACC are characterized by higher diffusivities These

areas are downstream of South Africa in the Agulhas return current, south of Australia,

and in the southern Pacific Ocean. In low latitudes the dominant feature is the high PV

diffusivity in the westward current regimes. High diffusivities in the subsurface layers

are apparent in the westward equatorial currents of the Indian ocean, of the Pacific and

of the North Atlantic.

The absolute influence of topography is largest in the ACC and in the subtropical and

subpolar ocean of the northern hemisphere (see zonal averages in fig.(4.12)). In the

northern hemisphere topographic suppression is large in the boundary currents, with

the largest influence north of 50 degree in the Labrador current. The vertical structure

of the zonally averaged κpv is shown in fig.(4.14). The zonal mean diffusivities in the

eastward sheared ACC have a mid-depth maximum approximately at the steering level,

where |uh − Re(c)| = 0 and show an overall increase towards depth.

As seen in the chosen profile from the ACC (see fig.(4.5a)), this structure is close to the

Eady-case. The mean steering level gets shallower towards the equator and is deepest

in the Southern Ocean. The strong diffusivities north and south of the equator are

concentrated in the upper 500 m and can be linked to the westward shear areas of the

zonal velocity.

The relation between mean velocities and the resulting PV diffusivity can be best seen

in the transects shown in fig.(4.16) and fig.(4.17). In the deep reaching eastward ACC

currents, PV diffusivities are often almost constant with an increase towards depth.

The increase at the steering level is little and the main effect of the background velocity
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on the vertical structure is a suppression of PV diffusivity towards the surface. This

behavior corresponds to the Eady mode.

In the Kuroshio and the Gulf Stream κpv is small. The highest values exist around the

steering level. Away from the steering level, the suppression by the mean flow is large.

In comparison to the ACC, the boundary currents are much more surface-intensified. As

discussed in chapter 4.1, surface intensified eastward currents are more stable than deep

eastward currents. The small diffusivities in the extensions of the boundary currents are

most probably a consequence.

4.4.2. Thickness diffusivity

As seen in the previous section, the vertical structure of PV diffusivity is mainly influ-

enced by the depth of the steering level. Thickness diffusivity has no direct dependence

on the depth of the steering level. However, as we have seen in the idealized profiles,

the vertical structure of thickness diffusivity is similar to the vertical structure of PV

diffusivity. Fig.(4.13) shows the global structure of thickness diffusivity at the same

depth levels as shown for PV diffusivity. The dominant features are also the low lati-

tude return currents and the ACC. However the boundary currents are more pronounced

in comparison to fig.(4.12), especially the Benguela current and the GS. The horizontal

distribution is smoother than the distribution of PV diffusivity. At increased depth the

GS is characterised by a negative κb, thus an upgradient diffusion of buoyancy. The

profile in fig.(4.5b) showed, that this can be related to the influence of topography and

occurs underneath the main current.

Negative thickness diffusivity can only exist in our solution, if κb changes sign in the

interior. Depth integrated thickness diffusivity is always larger than zero. Apart from

the GS, negative thickness diffusion is apparent in mixed shear regions in low latitudes.

The differences between the zonally averaged thickness diffusivity in fig.(4.15) and the

zonally averaged PV diffusivity are a more vertically constant distribution in the ACC,

with values increasing towards depth and more evenly distributed values in the upper

500 m in low latitudes. Both differences origin from the sharpening of PV diffusion

42



4.4. Eddy diffusivities

around the steering level. In the meridional transects the principal similarity of both

diffusivities is also noticable. The transect in the GS shows that the sign-change of κb

occurs approximately at 1500 m depth.
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a

b

c

Figure 4.12.: PV diffusivity κpv [m2s−1] at different depth levels. a) at 150 m. b) at 500

m. c) at 1500 m. Straight lines represent mean buoyancy contours at 500

m depth. On the right side are the zonal means. Straight lines are from

the maps shown left and dashed lines are from the respective values for the

flat bottom case.
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a

b

c

Figure 4.13.: Global maps as in fig.(4.12) but for thickness diffusivity κb [m2 s−1] in (a)

150 m. (b) 500 m. (c) 1500 m depth.
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Figure 4.14.: Zonally averaged PV diffusivity κpv [m2s−1]. White lines mark the zonal

mean isopycnals. Black dots mark the zonal mean steering level |uh −

Re(c)| = 0.

Figure 4.15.: Zonal averaged values as in fig.(4.14) but for thickness diffusivity κb [m2s−1]
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a b

c d

e f

Figure 4.16.: PV diffusivity κpv (a,c,e) and thickness-diffusivity κb (b,d,f) [m2s−1] for cho-

sen meridional transects in the Southern Ocean. (a,b) along 60◦E. (c,d)

along 130◦E. (e,f) along 310◦E. White lines mark isopycnals, red lines east-

ward zonal velocities, blue lines westward zonal velocities. Black dots mark

the steering level |uh − Re(c)| = 0.
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a b

c d

Figure 4.17.: PV diffusivity κpv (a,c) and thickness-diffusivity κb (b,d) [m2s−1] for chosen

meridional transects in the North Pacific and the North Atlantic. (a,b)

along 150◦E. (c,d) along 289◦E. White lines mark isopycnals, red lines

eastward zonal velocities, blue lines westward zonal velocities. Black dots

mark the steering level |uh − Re(c)| = 0.
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4.4.3. Skewness diffusivities

Referring on the idealized profiles shown in fig.(4.4) we discussed that skewness diffu-

sivities arise, if wavenumber vector and mean gradient of either buoyancy or potential

vorticity are not perpendicular. In fig.(4.4b) the planetary vorticity gradient β is the

reason for the inclination of the wavenumber vector. In the ocean the direction of the

mean potential vorticity gradient is usually varying with depth. Hence the skewness PV

diffusivity νpv arises. Indeed the mean PV gradient is very noisy and changes direction

frequently. In comparison to the always positive PV diffusivity κpv, the skewness PV

diffusivity νpv can also obtain negative values, depending on the direction of the mean

PV gradient. The dependency on the noisy mean PV gradient results in noisy skewness

diffusivities νpv. We skip a detailed description of the spatial dependency of νpv and

focus on the spatial dependency of the skewness thickness diffusivity νb, that indicates

a clearer structure.

In comparison to the mean PV gradient the mean buoyancy gradient is smooth. As

discussed in the introduction of the GM-parametrization in chapter 2.2, the skewness

diffusivity νb represents isopycnal thickness advection. If the perturbation wave prop-

agates diagonal to the mean buoyancy gradient, the gradient is not only reduced, but

also an eddy-induced advection along or against the mean current is triggered.

Figures (4.18) and (4.19) show results for the isopycnal thickness advection νb. Zonal

mean isopycnal thickness advection νb is about an order of magnitude smaller than zonal

mean κb. Fig.(4.4) shows, that it tends to be positive in eastward currents and negative

in westward currents. This can be even better seen in the transects in fig.(4.19). The

tendency points towards the β-effect as a main source for νb. The currents of mixed shear

in low latitudes are certainly a region, where νb is likely to arise as the mean buoyancy

gradient changes direction with depth. Actually, in low latitudes the isopycnal thickness

advection can have the same order of magnitude as downgradient thickness diffusion κb.

The Gulf Stream transect reveals a negative νb in the upper 300 m and positive νb in

the area of the main current and beneath. For a better understanding of the behavior

of νb, the dependency on the mean meridional velocity has to be studied more precisely.
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A more precise investigation of the magnitude and source of νb exceeds the subject of

this study.
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Figure 4.18.: Isopycnal thickness advection νb [m2 s−1] in 500 m depth. The zonal average at this

depth on the right hand side.

a b

Figure 4.19.: Isopycnal thickness advection νb [m2 s−1] for the meridional transects in (a)

the North Atlantic along 289◦ E and (b) the North Pacific along 150◦ E.

White lines mark isopycnals, red lines eastward zonal velocities, blue lines

westward zonal velocities.
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In the following chapter we will discuss the limitations of local baroclinic linear stability

analysis and make an effort to put the results of this study in respect to recent estimations

of eddy time- and lengthscales and to recent diagnostics of eddy diffusivities.

5.1. Limitations of the local baroclinic assumption

The shown results represent a snapshot of eddy properties derived from the data of the

used WOCE climatology. Methods to derive eddy diffusivities from either observations

or models require a certain time span, thus the values are time-averaged values. Applying

LSA on subsequent snapshots (e.g. monthly means) would certainly smooth the results

to a certain degree. The structural differences, which would still exist between the

shown and diagnosed eddy properties will be discussed in the following. To visualize the

differences fig.(5.1) shows eddy kinetic energy (EKE) calculated from LSA compared

to EKE from the eddy resolving STORM model (von Storch et al. (subm.)) and from

satellite observations (Scharffenberg and Stammer (2010)). EKE can be calculated from

the perturbation waves of LSA by

EKE =
u′2 + v′2

2
=

Re(uu∗) + Re(vv∗)

4
=
ψ2

0

4
(k2
x + k2

y) · Re(φφ∗) (5.1)

Common features in the EKE images are increased values in the ACC and in the offshore

regions of the GS and Kuroshio and the low EKE in the interior of the subtropical gyres.

A feature also observable in all studies is the increased eddy activity in the Pacific

subtropical return current. In the observations and in the model EKE is also high in the

extensions of boundary currents into the open ocean, where EKE from LSA is quite low.
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a

b

c

Figure 5.1.: (a) EKE [cm2s2] at 150 m depth from LSA. (b) EKE at 150 m depth from

the STORM model (von Storch et al. (subm.)). (c) EKE from Topex-

Poseidon satellite-measured sea surface height anomalies (from Scharffen-

berg and Stammer (2010)).
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The difference can be linked to eddies propagating away from their source. Due to the

local and linear assumptions, LSA can just identify the source of eddies, the processes

that occur during the lifetime of an eddy are nonlinear turbulent processes.

Eddy kinetic energy at the equator is high in the observations, but observational errors

are also high at the equator(see Scharffenberg and Stammer (2010)). In the STORM

model, equatorial EKE is lower than EKE in the mayor currents. As noted before,

linear stability analysis is not applicable near the equator as it is based on the quasi-

geostrophic assumption, which is not valid for conditions at the equator. Furthermore

equatorial instability waves are mostly related to barotropic shear instability processes,

which are not considered in our baroclinic analysis. Shear instabilities can also play a

role on the frontiers of strong currents, like south of the Gulf Stream, where horizontal

shear is high.

5.2. Comparison with recent studies

In the following chapter we will compare the results of our study with recent studies,

that use linear stability analysis to derive eddy properties and with eddy diffusivities

derived by using different techniques.

Smith (2007) and Tulloch et al. (2011) use LSA to produce global maps of time- and

lengthscales of meso-scale instability waves from different climatologies. The regions of

high growthrates are in agreement with our results. The tendency in our results, that

the lengthscale of instable waves is decoupled from the Rossby radius is also result of

both studies. The lengthscale of the instable wave is larger than the Rossby radius in

high latitudes and smaller in low latitudes.

When we derived the closure, we noted that the lengthscale of the fastest growing un-

stable wave is not equal to the final eddy lengthscale. Nonlinear processes influence the

final eddy lengthscale and it is usually larger than the lengthscale of the fastest growing

mode. However, different observational studies support the assumption, that the eddy

scale varies less with latitude than the Rossby radius (e.g. Chelton et al. (2007), Eden
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a b

Figure 5.2.: Different estimates of meso-scale eddy diffusivities of passive tracers. (a)

Effective Osborn-Cox Diffusivity of a passive tracer derived from a 1/3◦

ocean surface model. From Abernathey et al. (submitted). (b) Isopycnal

(cross mean temperature contours) Lagrangian diffusivity [m2s−1] in the

Southern Ocean averaged between 120◦ E and 160◦ E derived from a 1/10◦

model. From Griesel et al. (submitted)

a b

Figure 5.3.: Different estimates of thickness diffusivity κb [m2s−1] in 300 m depth from

eddy fluxes from which different rotational fluxes have been removed. Eddy

fluxes are calculated from a 1/12◦ eddy-resolving model. From Eden et al.

(2007)
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(2007)). The approximate lengthscale Lbc used in this study is based on the study by

Eden (2007). Eden (2007) analyzes eddy lengthscales derived from satellite observations

and model simulations and finds scales proportional to the Rossby radius in high lati-

tudes and scales proportional to the Rhine’s scale in low latitudes.

The effect of a topographic slope on the magnitude of a vertically constant thickness dif-

fusivity is subject of a study by Isachsen (2011). Isachsen (2011) compares LSA results

with an idealized model in high latitudes. The tendency for diffusivities to decrease for

topographic slopes is a result of the idealized model. The maximum of diffusivities, that

result from LSA, for a slight orthogonal slope is not found in the model simulation. Thus

it is stated, that linear stability theory is only partly able to represent the influence of

topography on eddy properties.

Multiple methods exist to diagnose meso-scale eddy diffusivities from eddy-resolving

models, adjoined models or satellite observations. Most studies calculate passive tracer

diffusivities, which can be rather compared to PV diffusivity than to thickness diffusiv-

ity as argued by Nakamura (1996) and Smith and Marshall (2009). The increased PV

diffusivities at mid-depth in the Southern Ocean are in line with current studies of Smith

and Marshall (2009) and Abernathey et al. (2010). Smith and Marshall (2009) also uses

linear stability analysis and compares the result with a simple nonlinear model. Both

results support the mid-depth mixing theory in the ACC.

Abernathey et al. (2010) is showing effective Osborn-Cox diffusivity derived from an

eddy-permitting Southern Ocean model. Effective diffusivity represents Lagrangian pas-

sive tracer mixing, Effective diffusivity is increased at mid-depth in the ACC, but in-

creased mixing rates are also found near the surface in the equatorward flank of the

ACC. The later feature is not present in our study. Abernathey et al. (2010) claim that

it is most likely related to the propagation of strong Agulhas eddies and eddies down-

stream of Drake passage.

In a recent submitted study by Abernathey, satellite sea-surface height anomalies are

used to drive a surface model and calculate surface effective diffusivity. The global map

shown in fig.5.2a is characterised by high diffusivities in the westward currents in the
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Pacific and Indian Oceans and the offshore regions of the boundary Pacific and Atlantic

boundary currents. Diffusivities in the ACC are low with the exception of the current

systems around South Africa. The zonal average of effective surface diffusivity looks very

similar to the zonal mean PV diffusivity from LSA in 150 m depth shown in fig.(4.12a).

Griesel et al. (subm.) calculate the dispersion of floats in an eddy-resolving model

to derive Lagrangian cross-stream diffusivities in the Southern Ocean. The dominant

regions of high diffusivity are near the surface equatorwards of the ACC, like in Aber-

nathey et al. (2010). But in regions, where the ACC is characterised by one dominant

jet as shown in fig.(5.2b), they find structures similar to the transects from LSA shown

in fig.(4.16).

The comparison of PV diffusivity from LSA with diagnosed passive tracer diffusivities

shows, that the mentioned nonlinear factors, that are not present in linear stability anal-

ysis, can have a large influence on eddy diffusivities in the vicinity of strong currents.

The main factor seems to be the radiation of eddies into weakly sheared areas. However,

most notably the studies by Griesel et al. (subm.) and Smith and Marshall (2009) indi-

cate, that LSA is able to describe the structure of eddy diffusivity inside strong current

regimes.

Studies of thickness diffusivity based on high resolution models suffer from the fact, that

they have to account for a rotational flux, which is created by rotating eddies and needs

to be removed to detect the effect eddies have on the mean density field.

Eden et al. (2007) and Eden (2006) show thickness diffusivities κb and isopycnal thick-

ness advection νb in the North Atlantic and Southern Ocean respectively. In the ACC

they get a structure of thickness diffusivity rather similar to the PV diffusivity shown in

this study, with a dominant interior maximum at the steering level. In the upper Gulf

Stream they actually calculate negative thickness diffusivities even after removing differ-

ent rotational fluxes (see fig.(5.3)). Thickness diffusivity is higher and positive south of

the GS. Isopycnal thickness advection νb is positive in the GS and negative in the ACC.

The result in the GS matches with our results, but diffusivities from LSA are positive

in the ACC as well.
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Studies by Ferreira et al. (2005) and Liu et al. (2012) also support the finding, that

thickness diffusivity can obtain negative values in strong current systems.

Eden (2011) is supporting the depth-intensified structure of thickness diffusivities in

the ACC in an simplified eddy-resolving model study with flat bottom. The differences

between thickness diffusivity from LSA and diagnosed thickness diffusivity are more

complex than the differences between PV- and tracer diffusivity. The diagnosis of thick-

ness diffusivity seems to be highly related to the used model and method.

Idealized models like the one used in Eden (2011) indicate that thickness diffusivities

from LSA are able to reproduce thickness diffusivities from eddy-resolving models.
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The magnitude and spatial dependency of meso-scale eddy diffusivities plays an im-

portant role for parametrizations of meso-scale fluxes in low resolution ocean models.

Considering the complexity of ocean background conditions, it is difficult to distinguish

the factors, that influence magnitude and spatial dependency of eddy diffusivities in the

ocean. Using a closure based on a numeric solution of the local linear stability problem,

we started with the simplest case, the Eady (1949) background conditions and added

planetary vorticity, topographic slopes, and depth-dependent potential vorticity subse-

quently.

Eady conditions are a constant vertical velocity shear, a constant stratification and no

planetary vorticity gradient. For these conditions thickness diffusivity is vertically con-

stant and PV diffusivity is symmetric to the steering level at mid-depth. Eady’s analytic

solution links the lengthscale to the first baroclinic Rossby radius and the growthrate to

the local Richardson number.

We show that Eady’s analytic solution breaks down in combination with large relations

of β/∇q and ∇h∗/∇q. In other words, time- and lenghtscales of the solution are mod-

ified, if the vorticity gradient created by either planetary vorticity or the topographic

slope has the same order as the gradient created by vertical shear of velocities. These

insights can be carried over to the solution for the more complex profiles from climato-

logical data.

Lengthscales of the instable waves in low latitudes are smaller than predicted by Eady.

The absolute lengthscale remains quite constant polewards of 20 degrees. The stability

due to topographic slopes is large in the subpolar ocean polewards of 40 degrees, with
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reductions of growthrates and lengthscales of around 20 percent. These less instable

and smaller perturbation waves lead to significant smaller diffusivities especially in the

ACC.

The vertical structure of diffusivities in constantly sheared profiles depends on the an-

gle to the planetary vorticity gradient β. Eastward currents have a depth-increasing

structure of diffusivities, westward currents a depth-decaying structure. PV diffusivity

differs from thickness diffusivity mainly by the local increase at the steering level. A

consequence of the steering level is that the global distribution of thickness diffusivity

is smoother than the global distribution of PV diffusivity.

Idealized profiles with a more realistic surface-intensified shear reveal that westward cur-

rents are more unstable and produce higher eddy diffusivities than eastward currents. A

consequence is that high diffusivities result in the westward return currents between 10◦

- 20◦ north and south of the equator. In comparison, diffusivities in surface intensified

eastward currents like the GS and the Kuroshio are low . Diffusivities of the deep ACC

are high and increase towards depth, which is an indication, that the ACC can be well

approximated with Eady conditions.

We discussed the limits of linear stability analysis which are consequences of the neglect

of nonlinear effects and of the local baroclinic assumption. We show that our results

are similar to diagnosed eddy diffusivities from eddy-resolving models or observations,

considering the limits of LSA. The main aspects, that are consistent with other studies

are the following.

We find high near surface eddy diffusivities in low latitudes related to westward mean

flow. Furthermore we find an increased PV diffusivity at the steering level along with

suppression at the surface and a suppression of diffusivities by topographic slopes in

high latitudes.

It is difficult to assume the impact of the calculated meso-scale eddy diffusivities on the

ocean circulation in a model parametrization. The circulation-pattern would react on

the magnitude of the diffusivities and the net impact has to be evaluated. A problem

would certainly arise from the noisiness of the results related to the switch between
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different growing modes. Another problem would be the high computational effort. We

show that a simple approximation of the amplitude of diffusivities by using the local

Richardson number would lead to an overestimation of diffusivities in high latitudes and

an underestimation in low latitudes. This effect can be mainly linked to the influences

of topography and planetary β.

An attempt to reduce the computational effort of LSA is made in Killworth (1997) and

in Eden (2012, in press) by constructing an approximate solution of linear stability anal-

ysis in form of a power series. The effect of eddy propagation away from their origin is

addressed in Eden and Greatbatch (2008) by implementing a radiation scheme of eddy

kinetic energy, that would complement the results from linear stability analysis. An

approach to increase the information delivered by linear stability analysis is to increase

the complexity by including ageostrophic motion and horizontal shear. The inclusion

of ageostrophic motion allows to extend the analysis on the oceanic mixed layer. An

inclusion of horizontal shear would allow to study the magnitude of barotropic instability.
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A.1. Modification of LSA for use with climatological

data

Using linear stability analysis with profiles from climatological or model data creates

several problems. In this section the dominant issues will be addressed and the applied

methods are presented:

Numerical noise and small scale perturbations The process of baroclinic instability

is closely linked to the mean PV gradient. As the PV gradient is usually not a variable

used in models and is not taken into account in the construction of climatologies, it has

to be calculated with a finite difference method using the model grid, stratification and

velocities. This calculation introduces noise in the gradient, which in this case usually

leads to multiple zero-crossings in the vertical profile due to small changes in the vertical

derivative of the velocities. The waves excited by these zero-crossings are closely related

to the few grid points in which the crossings occur and tend to dominate the solution

for small wavelengths. As we are mainly interested in the modes relevant for meso-scale

mixing, which are in the range of the first baroclinic Rossby Radius, these small scale

perturbations need to be suppressed or filtered to receive the baroclinic modes. In our

script we address this issue by introducing a horizontal isotropic friction parameter Ah

in the potential vorticity equation (2.17).

∂tq
′ + uh · ∇q′ + u′ · ∇q = Ah∇2q′ (A.1)
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In so doing higher wavenumbers are damped relative to the value of Ah. We chose

Ah = 10m2s−1 as it is often used in ocean models and as it seems to represent a reasonable

compromise between preserving the growthrates of the desired modes and damping the

small scale modes.

Mixed Layer The Ocean mixed layer is characterized by a very low stratification N.

As the PV gradient is proportional to N−2, small velocity-shear variations create very

large PV gradients. The corresponding mixed layer instabilities have high growthrates

and dominate the wavenumber space at high wavenumbers. As we are interested in the

interior baroclinic modes and as the growthrates of mixed layer instabilities can only be

suppressed by large friction Ah, which also effects the baroclinic modes, the mixed layer

is excluded from the analysis. This is implemented by introducing a threshold for the

difference of density at the surface and in the regarded layer, which has to be exceeded

for the data to be included in the analysis. The threshold chosen is ∆ρ = 0.015kgm−3.

Direction of propagation The distribution of growthrates in wavenumber space is

symmetric. Which means that the solution delivers two possible directions of wave

propagationfor the fastest growing wave, which are valid. The direction has a mayor

influence on meso-scale mixing as upgradient mixing would occur, if the wave prop-

agates upstream, and downgradient mixing, if the wave propagates downstream in a

geostrophically balanced flow. A way to construct a measure for the direction of wave

propagation is to assume that the vertical integral of thickness diffusion is downgradi-

ent (as considered in the GM parametrization). So while it is possible that negative

thickness diffusivities exist, the perception is, that in the vertical mean the effect of

meso-scale eddies is a release of potential energy. So for a pair of wavenumbers kx and

ky, the condition is that

∫ 0

−h
κb(kx, ky) dz > 0. (A.2)
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A.2. Discretization of the linear stability problem

The discrete stretching operator Following Smith (2007), the discrete stretching op-

erator Γnm is

ΓnmΨm =
f 2ρ0

g



1
δ1

(
Ψ2−Ψ1

ρ2−ρ1

)
, n = 1

1
δn

(
Ψn−1−Ψn

ρn−ρn−1
− Ψn−Ψn+1

ρn+1−ρn

)
, n = 2...N − 1

1
δN

(
ΨN−1−ΨN

ρN−ρN−1

)
, n = N

(A.3)

,where δn = (∆n−1 + ∆n)/2 and ∆n the spacing between the Ψn and Ψn+1.

The discrete PV-gradient The discrete PV-gradient is computed using the discrete

stretching operator:

∇qn = Γnmvmî + (β − Γnmum) ĵ (A.4)

In presence of a topographic slopes hx and hy the bottom level is modified to:

∇qN =

(
fhx
∆N

+ ΓNmvm

)
î +

(
fhy
∆N

+ β − ΓNmum

)
ĵ. (A.5)

The slopes are calculated from the topography of the WOCE climatology. The 0.5x0.5

data is smoothed with a 2x2 running mean to remove small scale disturbance.

Discretization Without a background current the discrete version of eq.(2.19) is

Bijφj = 0

,with Bij = Γij − k2δij. The δs are Kronecker deltas, which equal unity if the indices

are equal and zero otherwise. The problem without background velocities delivers eigen-

values k and vertical eigenmodes of the stable wave responses, the Rossby waves. The

smallest eigenvalue k corresponds to the barotropic mode and the second smallest k
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corresponds to the first baroclinic Rossby-radius LRo = k−1
2 , which is compared with the

scales of the unstable waves. The full problem may be written:

ωBijφj = Aijφj

where

Aij = kβ̃mδijm + kŨmδinmBnj.

When friction is included Aij becomes

Aij = kβ̃mδijm + kŨmδinmBnj −
√
−1Ahk

2δijBij.

The boundary conditions are included by the discrete stretching operator. For N

depth levels, the solution consists of N eigenvectors φ and eigenvalues ω.
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