Dynamische und regionale Ozeanographie WS 2015/16

Carsten Eden und Detlef Quadfasel

Institut für Meereskunde, Universität Hamburg

November 23, 2015

11 - Waves and Instabilities

Recapitulation

Layered models
Gravity waves without rotation
Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation
Potential vorticity
Geostrophic adjustment

Recapitulation

Layered models
Gravity waves without rotation Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation Potential vorticity
Geostrophic adjustment

- "barotropic" and " baroclinic" layered model

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v=-g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u=-g \frac{\partial h}{\partial y} \\
\frac{D h}{D t}+h\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{gathered}
$$

- h is total thickness (" barotropic") or layer interface h_{i} (" baroclinic")
- either $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (" barotropic") or $g \rightarrow g \Delta \rho / \rho_{0}$ (" baroclinic")

Recapitulation

Layered models
Gravity waves without rotation
Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation
Potential vorticity
Geostrophic adjustment

- consider the (linearized) layered model with $f=0$ but now include y dependency \rightarrow plane wave

$$
\frac{\partial u}{\partial t}-\neq=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- consider the (linearized) layered model with $f=0$ but now include y dependency \rightarrow plane wave

$$
\frac{\partial u}{\partial t}-\neq \bar{\prime}=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f K=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- combine momentum and thickness equation to wave equation

$$
\frac{\partial \boldsymbol{u}}{\partial t}=-\quad g \nabla h, \quad \frac{\partial h}{\partial t}+\quad H \nabla \cdot \boldsymbol{u}=0
$$

- consider the (linearized) layered model with $f=0$ but now include y dependency \rightarrow plane wave

$$
\frac{\partial u}{\partial t}-\neq \bar{\prime}=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f K=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- combine momentum and thickness equation to wave equation

$$
\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t}=-\boldsymbol{\nabla} \cdot g \boldsymbol{\nabla} h, \frac{\partial}{\partial t} \frac{\partial h}{\partial t}+\frac{\partial}{\partial t} H \nabla \cdot \boldsymbol{u}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \nabla^{2} h=0
$$

- consider the (linearized) layered model with $f=0$ but now include y dependency \rightarrow plane wave

$$
\frac{\partial u}{\partial t}-\neq=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f K=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- combine momentum and thickness equation to wave equation

$$
\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t}=-\boldsymbol{\nabla} \cdot g \nabla h, \frac{\partial}{\partial t} \frac{\partial h}{\partial t}+\frac{\partial}{\partial t} H \nabla \cdot \boldsymbol{u}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \nabla^{2} h=0
$$

- wave solution $h=A \exp i\left(k_{1} x+k_{2} y-\omega t\right)=A \exp i\left(\boldsymbol{k} \cdot \boldsymbol{x}_{h}-\omega t\right)$

$$
\frac{\partial h}{\partial t}=-i \omega A \exp i(\ldots) \quad, \frac{\partial^{2} h}{\partial t^{2}}=(i \omega)^{2} A \exp i(\ldots)=-\omega^{2} A \exp i(\ldots)
$$

with wavenumber vector $\boldsymbol{k}=\left(k_{1}, k_{2}\right)$

- consider the (linearized) layered model with $f=0$ but now include y dependency \rightarrow plane wave

$$
\frac{\partial u}{\partial t}-\neq=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- combine momentum and thickness equation to wave equation

$$
\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t}=-\boldsymbol{\nabla} \cdot g \boldsymbol{\nabla} h, \frac{\partial}{\partial t} \frac{\partial h}{\partial t}+\frac{\partial}{\partial t} H \boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \nabla^{2} h=0
$$

- wave solution $h=A \exp i\left(k_{1} x+k_{2} y-\omega t\right)=A \exp i\left(\boldsymbol{k} \cdot \boldsymbol{x}_{h}-\omega t\right)$

$$
\begin{aligned}
\frac{\partial h}{\partial t} & =-i \omega A \exp i(\ldots) \quad, \quad \frac{\partial^{2} h}{\partial t^{2}}=(i \omega)^{2} A \exp i(\ldots)=-\omega^{2} A \exp i(\ldots) \\
\nabla h & =i \boldsymbol{k} A \exp i(\ldots) \quad, \boldsymbol{\nabla} \cdot \nabla h=i^{2} \boldsymbol{k} \cdot \boldsymbol{k} A \exp i(\ldots)=-k^{2} A \exp i(\ldots)
\end{aligned}
$$

with wavenumber vector $\boldsymbol{k}=\left(k_{1}, k_{2}\right)$ and $k=|\boldsymbol{k}|=\sqrt{k_{1}^{2}+k_{2}^{2}}$

- consider the (linearized) layered model with $f=0$ but now include y dependency \rightarrow plane wave

$$
\frac{\partial u}{\partial t}-\neq=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- combine momentum and thickness equation to wave equation

$$
\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t}=-\boldsymbol{\nabla} \cdot g \boldsymbol{\nabla} h, \frac{\partial}{\partial t} \frac{\partial h}{\partial t}+\frac{\partial}{\partial t} H \nabla \cdot \boldsymbol{u}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \nabla^{2} h=0
$$

- wave solution $h=A \exp i\left(k_{1} x+k_{2} y-\omega t\right)=A \exp i\left(\boldsymbol{k} \cdot \boldsymbol{x}_{h}-\omega t\right)$

$$
\begin{array}{ll}
\frac{\partial h}{\partial t} & =-i \omega A \exp i(\ldots) \quad, \frac{\partial^{2} h}{\partial t^{2}}=(i \omega)^{2} A \exp i(\ldots)=-\omega^{2} A \exp i(\ldots) \\
\nabla h & =i \boldsymbol{k} A \exp i(\ldots) \quad, \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} h=i^{2} \boldsymbol{k} \cdot \boldsymbol{k} A \exp i(\ldots)=-k^{2} A \exp i(\ldots)
\end{array}
$$

$$
\text { with wavenumber vector } \boldsymbol{k}=\left(k_{1}, k_{2}\right) \text { and } k=|\boldsymbol{k}|=\sqrt{k_{1}^{2}+k_{2}^{2}}
$$

- this works as long as

$$
-\omega^{2} \exp i(. .)+k^{2} g H \exp i(. .)=0 \rightarrow \omega^{2}=k^{2} g H \rightarrow \omega= \pm k \sqrt{g H}
$$

which is still the dispersion relation for a gravity wave (for $f=0$)

- plane wave in two dimensions is given by $h=A \exp i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)$
- wavenumber vector \boldsymbol{k} gives direction of phase propagation

- plane wave in two dimensions is given by $h=A \exp i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)$
- wavenumber vector \boldsymbol{k} gives direction of phase propagation
- wavelength $\lambda=2 \pi / k=2 \pi / \sqrt{k_{1}^{2}+k_{2}^{2}}$

- plane wave in two dimensions is given by $h=A \exp i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)$
- wavenumber vector \boldsymbol{k} gives direction of phase propagation
- wavelength $\lambda=2 \pi / k=2 \pi / \sqrt{k_{1}^{2}+k_{2}^{2}}$
- phase propagates from $t=0$ to $t=\Delta t$ the distance $\Delta s=c \Delta t$ \rightarrow phase velocity c in two dimensions

- add two waves with different \boldsymbol{k} and ω but same amplitude

$$
\begin{aligned}
h & =A \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)+A \cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{x}-\omega^{\prime} t\right) \\
h & \approx 2 A \cos \left(\frac{\Delta \boldsymbol{k}}{2} \cdot\left[\boldsymbol{x}-\boldsymbol{c}_{g} t\right]\right) \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)
\end{aligned}
$$

with the wavenumber difference $\Delta \boldsymbol{k}=\boldsymbol{k}^{\prime}-\boldsymbol{k}$ and the group velocity $\boldsymbol{c}_{g}=\left(\frac{\partial \omega}{\partial k_{1}}, \frac{\partial \omega}{\partial k_{2}}\right)=\partial \omega / \partial \boldsymbol{k}$

- amplitude modulation with speed \boldsymbol{c}_{g} and wave length $\Delta \boldsymbol{k}$

MWMaNMMONMN

- \boldsymbol{c}_{g} is the speed at which the amplitudes (energy) propagates
- while c is the propagation speed of the phase (in the direction \boldsymbol{k})
- both are in general different and different from particle velocity

Recapitulation

Layered models
Gravity waves without rotation
Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation
Potential vorticity
Geostrophic adjustment

- thickness, curl and divergence for $f=$ const

$$
\begin{aligned}
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \xi}{\partial t}-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=-g \nabla^{2} h \\
& \text { with } \zeta=\partial v / \partial x-\partial u / \partial y \text { and } \xi=\partial u / \partial x+\partial v / \partial y
\end{aligned}
$$

- thickness, curl and divergence for $f=$ const

$$
\begin{aligned}
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \xi}{\partial t}-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=-g \nabla^{2} h \\
& \text { with } \zeta=\partial v / \partial x-\partial u / \partial y \text { and } \xi=\partial u / \partial x+\partial v / \partial y
\end{aligned}
$$

- time differentiate divergence and replace with curl and thickness eq.

$$
\frac{\partial^{2} \xi}{\partial t^{2}}-f \frac{\partial \zeta}{\partial t}=-g \nabla^{2} \frac{\partial h}{\partial t}
$$

- thickness, curl and divergence for $f=$ const

$$
\begin{aligned}
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \xi}{\partial t}-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=-g \nabla^{2} h \\
& \text { with } \zeta=\partial v / \partial x-\partial u / \partial y \text { and } \xi=\partial u / \partial x+\partial v / \partial y
\end{aligned}
$$

- time differentiate divergence and replace with curl and thickness eq.

$$
\begin{aligned}
\frac{\partial^{2} \xi}{\partial t^{2}}-f \frac{\partial \zeta}{\partial t} & =-g \nabla^{2} \frac{\partial h}{\partial t} \\
\frac{\partial^{2}}{\partial t^{2}} \xi+f^{2} \xi & =g H \nabla^{2} \xi
\end{aligned}
$$

- thickness, curl and divergence for $f=$ const

$$
\begin{aligned}
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \xi}{\partial t}-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=-g \nabla^{2} h \\
& \text { with } \zeta=\partial v / \partial x-\partial u / \partial y \text { and } \xi=\partial u / \partial x+\partial v / \partial y
\end{aligned}
$$

- time differentiate divergence and replace with curl and thickness eq.

$$
\begin{aligned}
\frac{\partial^{2} \xi}{\partial t^{2}}-f \frac{\partial \zeta}{\partial t} & =-g \nabla^{2} \frac{\partial h}{\partial t} \\
\frac{\partial^{2}}{\partial t^{2}} \xi+f^{2} \xi & =g H \nabla^{2} \xi \\
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-\left(g H / f^{2}\right) \nabla^{2} \xi\right) & =0
\end{aligned}
$$

- thickness, curl and divergence for $f=$ const

$$
\begin{aligned}
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \\
& \frac{\partial \xi}{\partial t}-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=-g \nabla^{2} h \\
& \text { with } \zeta=\partial v / \partial x-\partial u / \partial y \text { and } \xi=\partial u / \partial x+\partial v / \partial y
\end{aligned}
$$

- time differentiate divergence and replace with curl and thickness eq.

$$
\begin{aligned}
\frac{\partial^{2} \xi}{\partial t^{2}}-f \frac{\partial \zeta}{\partial t} & =-g \nabla^{2} \frac{\partial h}{\partial t} \\
\frac{\partial^{2}}{\partial t^{2}} \xi+f^{2} \xi & =g H \nabla^{2} \xi \\
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-\left(g H / f^{2}\right) \nabla^{2} \xi\right) & =0 \\
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \nabla^{2} \xi\right) & =0
\end{aligned}
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- combined thickness, curl and divergence eq. for $f=$ const

$$
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \frac{\partial^{2} \xi}{\partial x^{2}}-R^{2} \frac{\partial^{2} \xi}{\partial y^{2}}\right)=0
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- combined thickness, curl and divergence eq. for $f=$ const

$$
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \frac{\partial^{2} \xi}{\partial x^{2}}-R^{2} \frac{\partial^{2} \xi}{\partial y^{2}}\right)=0
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- look for wave solutions

$$
\xi(x, y, t)=\xi_{0} \exp i\left(k_{1} x+k_{2} y-\omega t\right)
$$

with complex constant ξ_{0}

- combined thickness, curl and divergence eq. for $f=$ const

$$
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \frac{\partial^{2} \xi}{\partial x^{2}}-R^{2} \frac{\partial^{2} \xi}{\partial y^{2}}\right)=0
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- look for wave solutions

$$
\xi(x, y, t)=\xi_{0} \exp i\left(k_{1} x+k_{2} y-\omega t\right)
$$

with complex constant ξ_{0} which yields

$$
(-i \omega)^{2} \xi_{0} \exp (\ldots)+f^{2}\left(1-R^{2}\left(i k_{1}\right)^{2}-R^{2}\left(i k_{2}\right)^{2}\right) \xi_{0} \exp (\ldots)=0
$$

- combined thickness, curl and divergence eq. for $f=$ const

$$
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \frac{\partial^{2} \xi}{\partial x^{2}}-R^{2} \frac{\partial^{2} \xi}{\partial y^{2}}\right)=0
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- look for wave solutions

$$
\xi(x, y, t)=\xi_{0} \exp i\left(k_{1} x+k_{2} y-\omega t\right)
$$

with complex constant ξ_{0} which yields

$$
\begin{aligned}
(-i \omega)^{2} \xi_{0} \exp (\ldots)+f^{2}\left(1-R^{2}\left(i k_{1}\right)^{2}-R^{2}\left(i k_{2}\right)^{2}\right) \xi_{0} \exp (\ldots) & =0 \\
-\omega^{2}+f^{2}\left(1+R^{2} k_{1}^{2}+R^{2} k_{2}^{2}\right) & =0
\end{aligned}
$$

- combined thickness, curl and divergence eq. for $f=$ const

$$
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \frac{\partial^{2} \xi}{\partial x^{2}}-R^{2} \frac{\partial^{2} \xi}{\partial y^{2}}\right)=0
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- look for wave solutions

$$
\xi(x, y, t)=\xi_{0} \exp i\left(k_{1} x+k_{2} y-\omega t\right)
$$

with complex constant ξ_{0} which yields

$$
\begin{aligned}
(-i \omega)^{2} \xi_{0} \exp (\ldots)+f^{2}\left(1-R^{2}\left(i k_{1}\right)^{2}-R^{2}\left(i k_{2}\right)^{2}\right) \xi_{0} \exp (\ldots) & =0 \\
-\omega^{2}+f^{2}\left(1+R^{2} k_{1}^{2}+R^{2} k_{2}^{2}\right) & =0
\end{aligned}
$$

- this is a (plane wave) solution as long as ω satisfies

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

with $k^{2}=|\boldsymbol{k}|^{2}=k_{1}^{2}+k_{2}^{2}$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave
- short wave limit for $\lambda=2 \pi / k \ll R \rightarrow R^{2} k^{2} \gg 1$

$$
\omega^{R k \rightarrow \infty} \pm \sqrt{f^{2} R^{2} k^{2}}= \pm k \sqrt{g H}
$$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave
- short wave limit for $\lambda=2 \pi / k \ll R \rightarrow R^{2} k^{2} \gg 1$

$$
\omega^{R k \rightarrow \infty} \pm \sqrt{f^{2} R^{2} k^{2}}= \pm k \sqrt{g H}, \quad c \stackrel{R k \rightarrow \infty}{=} \pm \sqrt{g H}
$$

\rightarrow (non-dispersive) gravity waves without rotation (black lines)

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave
- long wave limit for $\lambda=2 \pi / k \gg R \rightarrow R^{2} k^{2} \ll 1$

$$
\omega \stackrel{R k \rightarrow 0}{=} \pm f, \quad c \stackrel{R k \rightarrow 0}{=} \pm \infty
$$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave
- long wave limit for $\lambda=2 \pi / k \gg R \rightarrow R^{2} k^{2} \ll 1$

$$
\omega \stackrel{R k \rightarrow 0}{=} \pm f, \quad c \stackrel{R k \rightarrow 0}{=} \pm \infty
$$

- these are inertial oscillations which also result from

$$
\partial u / \partial t-f v=0, \quad \partial v / \partial t+f u=0
$$

- trajectories of surface drifter \rightarrow inertial oscillations

from d'Asaro et al 1995
- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

- group velocity is given by $\boldsymbol{c}_{g}=(g H / \omega) \boldsymbol{k}($ red line for $f \neq 0)$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

- group velocity is given by $\boldsymbol{c}_{g}=(g H / \omega) \boldsymbol{k}$ (red line for $\left.f \neq 0\right)$
- short wave limit for $\lambda \ll R$

$$
\omega^{\lambda \leqq R} \pm k \sqrt{g H}, \quad \boldsymbol{c}_{g} \stackrel{\lambda \leqq R}{\leftrightarrows} \pm \sqrt{g H} \boldsymbol{k} / \boldsymbol{k}=c \boldsymbol{k} / k
$$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

- group velocity is given by $\boldsymbol{c}_{g}=(g H / \omega) \boldsymbol{k}$ (red line for $\left.f \neq 0\right)$
- short wave limit for $\lambda \ll R$

$$
\omega^{\lambda \leqq R} \pm k \sqrt{g H}, \quad \boldsymbol{c}_{g} \stackrel{\lambda \ll R}{=} \pm \sqrt{g H} \boldsymbol{k} / k=c \boldsymbol{k} / k
$$

- long wave limit for $\lambda \gg R$

$$
\omega^{\lambda \gg R} \pm f \quad, \quad \boldsymbol{c}_{g} \stackrel{\lambda \geqq}{=} 0
$$

Recapitulation

Layered models
Gravity waves without rotation
Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation
Potential vorticity
Geostrophic adjustment

- consider again the (linearized) layered model with $f \neq 0$

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- suppose we have a solid boundary at $y=\left.0 \rightarrow v\right|_{y=0}=0$
- consider again the (linearized) layered model with $f \neq 0$

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- suppose we have a solid boundary at $y=\left.0 \rightarrow v\right|_{y=0}=0$
- look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0
$$

- consider again the (linearized) layered model with $f \neq 0$

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- suppose we have a solid boundary at $y=\left.0 \rightarrow v\right|_{y=0}=0$
- look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0
$$

- combining the first and the last equation yields wave equation

$$
\frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A \exp i(k x-\omega t)$, but now $A=A(y)$

- consider again the (linearized) layered model with $f \neq 0$

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- suppose we have a solid boundary at $y=\left.0 \rightarrow v\right|_{y=0}=0$
- look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0
$$

- combining the first and the last equation yields wave equation

$$
\frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A \exp i(k x-\omega t)$, but now $A=A(y)$

- gravity wave $(f=0)$ in x with phase velocity $c= \pm \sqrt{g H}$
- for y dependency of A we consider the second equation
- solid boundary at $y=0$, look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A(y) \exp i(k x-\omega t)$ and $\omega= \pm k \sqrt{g H}$

- for y dependency of A we consider the second equation
- solid boundary at $y=0$, look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A(y) \exp i(k x-\omega t)$ and $\omega= \pm k \sqrt{g H}$

- for y dependency of A we consider the second equation
- assume wave $u=U(y) \exp i(k x-\omega t)$ with amplitude U from

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x} \rightarrow-i \omega U \exp i(\ldots)=-g i k A \exp i(\ldots) \rightarrow U=g \frac{k A}{\omega}
$$

- solid boundary at $y=0$, look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A(y) \exp i(k x-\omega t)$ and $\omega= \pm k \sqrt{g H}$

- for y dependency of A we consider the second equation
- assume wave $u=U(y) \exp i(k x-\omega t)$ with amplitude U from

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x} \rightarrow-i \omega U \exp i(\ldots)=-g i k A \exp i(\ldots) \rightarrow U=g \frac{k A}{\omega}
$$

- using this in the second equation yields

$$
f u=-g \frac{\partial h}{\partial y} \rightarrow(f / c) A=-A^{\prime} \rightarrow A=A_{0} e^{-f y / c}=A_{0} e^{ \pm y / R}
$$

with $c=\omega / k= \pm \sqrt{g H}$ and with Rossby radius $R=\sqrt{g H} /|f|$

- solid boundary at $y=0$, look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A(y) \exp i(k x-\omega t)$ and $\omega= \pm k \sqrt{g H}$

- for y dependency of A we consider the second equation
- assume wave $u=U(y) \exp i(k x-\omega t)$ with amplitude U from

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x} \rightarrow-i \omega U \exp i(\ldots)=-g i k A \exp i(\ldots) \rightarrow U=g \frac{k A}{\omega}
$$

- using this in the second equation yields
$f u=-g \frac{\partial h}{\partial y} \rightarrow(f / c) A=-A^{\prime} \rightarrow A=A_{0} e^{-f y / c}=A_{0} e^{ \pm y / R}$
with $c=\omega / k= \pm \sqrt{g H}$ and with Rossby radius $R=\sqrt{g H} /|f|$
- only the decaying solution in y is reasonable
- Kelvin wave
- Kelvin wave along solid boundary at $y=0$

$$
h=A_{0} e^{ \pm y / R} \exp i(k x-\omega t), u=\left(g A_{0} / c\right) e^{ \pm y / R} \exp i(k x-\omega t), v=0
$$

$$
\text { and } \omega= \pm k \sqrt{g H} \text { and with Rossby radius } R=\sqrt{g H} /|f|
$$

- only the decaying solution in y is reasonable
- works in the same way for boundary along x or any other direction

- tidal Kelvin wave in the North Sea

from Klett (2014)

Recapitulation

Layered models
Gravity waves without rotation Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation
Potential vorticity
Geostrophic adjustment

- "barotropic model" and "baroclinic model"

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u=-g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(u h)+\frac{\partial}{\partial y}(v h)=0
\end{gathered}
$$

- h is total thickness (" barotropic") or layer interface h_{i} ("baroclinic")
- either $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (" barotropic") or $g \rightarrow g \Delta \rho / \rho_{0}$ ("baroclinic")

- consider the layered model (first without $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ for simplicity)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- take curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$
- consider the layered model (first without $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ for simplicity)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- take curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
\frac{\partial}{\partial x}(2 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial v}{\partial x}+\frac{\partial}{\partial x}(f u) & =-g \frac{\partial}{\partial x} \frac{\partial h}{\partial y} \\
\frac{\partial}{\partial y}(1 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial u}{\partial y}-\frac{\partial}{\partial y}(f v) & =-g \frac{\partial}{\partial y} \frac{\partial h}{\partial x}
\end{aligned}
$$

- consider the layered model (first without $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ for simplicity)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- take curl of momentum equation, i.e. $\partial(2 . e q n) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
\frac{\partial}{\partial x}(2 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial v}{\partial x}+\frac{\partial}{\partial x}(f u) & =-g \frac{\partial}{\partial x} \frac{\partial h}{\partial y} \\
\frac{\partial}{\partial y}(1 . \text { eqn }): \quad \frac{\partial}{\partial t} \frac{\partial u}{\partial y}-\frac{\partial}{\partial y}(f v) & =-g \frac{\partial}{\partial y} \frac{\partial h}{\partial x}
\end{aligned}
$$

subtract both

$$
\frac{\partial \zeta}{\partial t}+\frac{\partial}{\partial x}(f u)+\frac{\partial}{\partial y}(f v)=0
$$

with relative vorticity $\zeta=\partial v / \partial x-\partial u / \partial y$

- consider the layered model (first without $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ for simplicity)

$$
\begin{gathered}
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{gathered}
$$

- take curl of momentum equation, i.e. $\partial(2 . e q n) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
\frac{\partial}{\partial x}(2 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial v}{\partial x}+\frac{\partial}{\partial x}(f u) & =-g \frac{\partial}{\partial x} \frac{\partial h}{\partial y} \\
\frac{\partial}{\partial y}(1 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial u}{\partial y}-\frac{\partial}{\partial y}(f v) & =-g \frac{\partial}{\partial y} \frac{\partial h}{\partial x}
\end{aligned}
$$

subtract both

$$
\begin{aligned}
\frac{\partial \zeta}{\partial t}+\frac{\partial}{\partial x}(f u)+\frac{\partial}{\partial y}(f v) & =0 \\
\frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & =0
\end{aligned}
$$

with relative vorticity $\zeta=\partial v / \partial x-\partial u / \partial y$ and with $\beta=\partial f / \partial y$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- relative vorticity ζ becomes

$$
\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
$$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- relative vorticity ζ becomes

$$
\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x}\left(\frac{g}{f} \frac{\partial h}{\partial x}\right)-\frac{\partial}{\partial y}\left(-\frac{g}{f} \frac{\partial h}{\partial y}\right)
$$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- relative vorticity ζ becomes

$$
\begin{aligned}
\zeta & =\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x}\left(\frac{g}{f} \frac{\partial h}{\partial x}\right)-\frac{\partial}{\partial y}\left(-\frac{g}{f} \frac{\partial h}{\partial y}\right) \\
& =\frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)-\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y}
\end{aligned}
$$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- relative vorticity ζ becomes

$$
\begin{aligned}
\zeta & =\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x}\left(\frac{g}{f} \frac{\partial h}{\partial x}\right)-\frac{\partial}{\partial y}\left(-\frac{g}{f} \frac{\partial h}{\partial y}\right) \\
& =\frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)-\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \approx \frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)
\end{aligned}
$$

assuming $\left|\left(g \beta / f^{2}\right) \partial h / \partial y\right| \ll|\partial v / \partial x|$, i.e small variations of f

$$
\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \sim \frac{U}{\Omega} \frac{\Omega}{a}
$$

with Earth radius a

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- relative vorticity ζ becomes

$$
\begin{aligned}
\zeta & =\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x}\left(\frac{g}{f} \frac{\partial h}{\partial x}\right)-\frac{\partial}{\partial y}\left(-\frac{g}{f} \frac{\partial h}{\partial y}\right) \\
& =\frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)-\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \approx \frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)
\end{aligned}
$$

assuming $\left|\left(g \beta / f^{2}\right) \partial h / \partial y\right| \ll|\partial v / \partial x|$, i.e small variations of f

$$
\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \sim \frac{U}{\Omega} \frac{\Omega}{a}, \frac{\partial v}{\partial x} \sim \frac{U}{L}
$$

with Earth radius a

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- then $v \approx(g / f) \partial h / \partial x$ and $u \approx-(g / f) \partial h / \partial y$
- relative vorticity ζ becomes

$$
\begin{aligned}
\zeta & =\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x}\left(\frac{g}{f} \frac{\partial h}{\partial x}\right)-\frac{\partial}{\partial y}\left(-\frac{g}{f} \frac{\partial h}{\partial y}\right) \\
& =\frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)-\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \approx \frac{g}{f}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)
\end{aligned}
$$

assuming $\left|\left(g \beta / f^{2}\right) \partial h / \partial y\right| \ll|\partial v / \partial x|$, i.e small variations of f

$$
\frac{g}{f^{2}} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \sim \frac{U}{\Omega} \frac{\Omega}{a}, \frac{\partial v}{\partial x} \sim \frac{U}{L} \rightarrow \frac{U}{a} \ll \frac{U}{L} \text { if } L \ll a
$$

with Earth radius a, i.e. only length scales L smaller than a are valid

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v=0
$$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\begin{aligned}
\frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & =0 \\
\frac{g}{f} \frac{\partial}{\partial t} \nabla^{2} h-\frac{f}{H} \frac{\partial h}{\partial t}+\beta \frac{g}{f} \frac{\partial h}{\partial x} & \approx 0
\end{aligned}
$$

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \quad=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\begin{aligned}
\frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & =0 \\
\frac{g}{f} \frac{\partial}{\partial t} \nabla^{2} h-\frac{f}{H} \frac{\partial h}{\partial t}+\beta \frac{g}{f} \frac{\partial h}{\partial x} & \approx 0 \\
\frac{\partial}{\partial t}\left(\nabla^{2} h-R^{-2} h\right)+\beta \frac{\partial h}{\partial x} & \approx 0
\end{aligned}
$$

with the "Rossby radius" $R=\sqrt{g H} /|f|$ and Earth radius a

- assume small Rossby number Ro, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\begin{aligned}
\frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & =0 \\
\frac{g}{f} \frac{\partial}{\partial t} \nabla^{2} h-\frac{f}{H} \frac{\partial h}{\partial t}+\beta \frac{g}{f} \frac{\partial h}{\partial x} & \approx 0 \\
\frac{\partial}{\partial t}\left(\nabla^{2} h-R^{-2} h\right)+\beta \frac{\partial h}{\partial x} & \approx 0
\end{aligned}
$$

with the "Rossby radius" $R=\sqrt{g H} /|f|$ and Earth radius a

- single equation in h : quasi-geostrophic potential vorticity equation valid for $R o \ll 1$ and $L \ll a$
- quasi-geostrophic potential vorticity (PV) equation

$$
\frac{\partial}{\partial t}\left(\nabla^{2} h-R^{-2} h\right)+\beta \frac{\partial h}{\partial x}=0
$$

valid for $R o \ll 1$ and $L \ll a$
with the "Rossby radius" $R=\sqrt{g H} /|f|$ and Earth radius a

- h is total thickness (" barotropic") or layer interface h_{i} ("baroclinic")
- either $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (" barotropic") or $g \rightarrow g \Delta \rho / \rho_{0}$ ("baroclinic")

- consider again the layered model, but this time with $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$

$$
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} u-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} v+f u=-g \frac{\partial h}{\partial y}
$$

- take curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$
- consider again the layered model, but this time with $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$

$$
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} u-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} v+f u=-g \frac{\partial h}{\partial y}
$$

- take curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
& \frac{\partial}{\partial x}(2 . \text { eqn }): \quad \frac{\partial}{\partial t} \frac{\partial v}{\partial x}+\frac{\partial}{\partial x}(\boldsymbol{u} \cdot \nabla v)+\frac{\partial}{\partial x}(f u)=-g \frac{\partial}{\partial x} \frac{\partial h}{\partial y} \\
& \frac{\partial}{\partial y}(1 . \text { eqn }): \quad \frac{\partial}{\partial t} \frac{\partial u}{\partial y}+\frac{\partial}{\partial y}(\boldsymbol{u} \cdot \nabla u)-\frac{\partial}{\partial y}(f v)=-g \frac{\partial}{\partial y} \frac{\partial h}{\partial x}
\end{aligned}
$$

- consider again the layered model, but this time with $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$

$$
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u=-g \frac{\partial h}{\partial y}
$$

- take curl of momentum equation, i.e. $\partial(2$.eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
& \frac{\partial}{\partial x}(2 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial v}{\partial x}+\frac{\partial}{\partial x}(\boldsymbol{u} \cdot \nabla v)+\frac{\partial}{\partial x}(f u)=-g \frac{\partial}{\partial x} \frac{\partial h}{\partial y} \\
& \frac{\partial}{\partial y}(1 . \text { eqn }): \quad \frac{\partial}{\partial t} \frac{\partial u}{\partial y}+\frac{\partial}{\partial y}(\boldsymbol{u} \cdot \nabla u)-\frac{\partial}{\partial y}(f v)=-g \frac{\partial}{\partial y} \frac{\partial h}{\partial x}
\end{aligned}
$$

subtract both

$$
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+\frac{\partial}{\partial x}(f u)+\frac{\partial}{\partial y}(f v)=0
$$

with relative vorticity $\zeta=\partial v / \partial x-\partial u / \partial y$

- consider again the layered model, but this time with $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$

$$
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u=-g \frac{\partial h}{\partial y}
$$

- take curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
& \frac{\partial}{\partial x}(2 . \text { eqn }): \frac{\partial}{\partial t} \frac{\partial v}{\partial x}+\frac{\partial}{\partial x}(\boldsymbol{u} \cdot \nabla v)+\frac{\partial}{\partial x}(f u)=-g \frac{\partial}{\partial x} \frac{\partial h}{\partial y} \\
& \frac{\partial}{\partial y}(1 . \text { eqn }): \quad \frac{\partial}{\partial t} \frac{\partial u}{\partial y}+\frac{\partial}{\partial y}(\boldsymbol{u} \cdot \nabla u)-\frac{\partial}{\partial y}(f v)=-g \frac{\partial}{\partial y} \frac{\partial h}{\partial x}
\end{aligned}
$$

subtract both

$$
\begin{aligned}
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+\frac{\partial}{\partial x}(f u)+\frac{\partial}{\partial y}(f v) & =0 \\
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial \boldsymbol{u}}{\partial y} \cdot \nabla u+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & =0
\end{aligned}
$$

with relative vorticity $\zeta=\partial v / \partial x-\partial u / \partial y$ and with $\beta=\partial f / \partial y$

- curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v=0
$$

- calculate

$$
\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial \boldsymbol{u}}{\partial y} \cdot \nabla u=
$$

- curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v=0
$$

- calculate

$$
\frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} v-\frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} u=\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y} \frac{\partial u}{\partial y}
$$

- curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v=0
$$

- calculate

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial \boldsymbol{u}}{\partial y} \cdot \nabla u & =\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \\
& =\frac{\partial v}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)-\frac{\partial u}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
\end{aligned}
$$

- curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v=0
$$

- calculate

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u & =\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \\
& =\frac{\partial v}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)-\frac{\partial u}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \\
& =\zeta\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
\end{aligned}
$$

- curl of momentum equation, i.e. $\partial(2$. eqn $) / \partial x-\partial(1 . e q n) / \partial y$

$$
\frac{D \zeta}{D t}+\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v=0
$$

- calculate

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial x} \cdot \nabla v-\frac{\partial u}{\partial y} \cdot \nabla u & =\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \\
& =\frac{\partial v}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)-\frac{\partial u}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \\
& =\zeta\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
\end{aligned}
$$

- now use $|\zeta| \ll|f| \rightarrow U / L \ll \Omega \rightarrow U /(\Omega L)=R o \ll 1$

$$
\frac{D \zeta}{D t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v \approx 0
$$

for $R o \ll 1$

- assume again $R o \ll 1$, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{D h}{D t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\frac{D \zeta}{D t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v \approx 0
$$

- assume again $R o \ll 1$, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{D h}{D t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\begin{aligned}
\frac{D \zeta}{D t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & \approx 0 \\
\frac{D}{D t}\left(\frac{g}{f} \nabla^{2} h\right)-\frac{f}{H} \frac{D h}{D t}+\beta \frac{g}{f} \frac{\partial h}{\partial x} & \approx 0
\end{aligned}
$$

- assume again $R o \ll 1$, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{D h}{D t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\begin{aligned}
\frac{D \zeta}{D t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & \approx 0 \\
\frac{D}{D t}\left(\frac{g}{f} \nabla^{2} h\right)-\frac{f}{H} \frac{D h}{D t}+\beta \frac{g}{f} \frac{\partial h}{\partial x} & \approx 0 \\
\frac{D}{D t}\left(\nabla^{2} h-R^{-2} h\right)+\beta \frac{\partial h}{\partial x} & \approx 0
\end{aligned}
$$

with the "Rossby radius" $R=\sqrt{g H} /|f|$ and Earth radius a

- assume again $R o \ll 1$, i.e. dominant geostrophic balance

$$
\begin{aligned}
& O(R o)-f v=-g \frac{\partial h}{\partial x} \quad, \quad O(R o)+f u=-g \frac{\partial h}{\partial y} \\
& \frac{D h}{D t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- curl $\zeta \approx(g / f)\left(\partial^{2} h / \partial x^{2}+\partial^{2} h / \partial y^{2}\right)$ for $R o \ll 1$ and $L \ll a$

$$
\begin{aligned}
\frac{D \zeta}{D t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\beta v & \approx 0 \\
\frac{D}{D t}\left(\frac{g}{f} \nabla^{2} h\right)-\frac{f}{H} \frac{D h}{D t}+\beta \frac{g}{f} \frac{\partial h}{\partial x} & \approx 0 \\
\frac{D}{D t}\left(\nabla^{2} h-R^{-2} h\right)+\beta \frac{\partial h}{\partial x} & \approx 0
\end{aligned}
$$

with the "Rossby radius" $R=\sqrt{g H} /|f|$ and Earth radius a

- non-linear quasi-geostrophic PV equation: $\partial / \partial t \rightarrow D / D t$ still valid only for $R o \ll 1$ and $L \ll a$
- Ro as $\log _{10}(|\zeta| /|f|)$ at 100 m in high resolution ocean model

- except for equatorial ocean, $R o=|\zeta| /|f|$ is well below 0.1

Recapitulation

Layered models
Gravity waves without rotation Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation
Potential vorticity
Geostrophic adjustment

- quasi-geostrophic potential vorticity (PV) equation

$$
\frac{D}{D t} \frac{g}{f}\left(\nabla^{2} h-R^{-2} h\right)+\beta v=\frac{D}{D t}\left[\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f_{0}+\beta y\right]=0
$$

with material derivative $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \boldsymbol{\nabla}$

- quasi-geostrophic potential vorticity (PV) equation
$\frac{D}{D t} \frac{g}{f}\left(\nabla^{2} h-R^{-2} h\right)+\beta v=\frac{D}{D t}\left[\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f_{0}+\beta y\right]=0$
with material derivative $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \nabla$
- " β-plane" approximation was used at $y^{\prime}=y_{0}+\Delta y$:

$$
f\left(y^{\prime}\right)=\left.f\right|_{y_{0}}+\left.\frac{\partial f}{\partial y}\right|_{y_{0}} \Delta y+\ldots \approx f_{0}+\beta \Delta y \equiv f_{0}+\beta y
$$

with $f_{0}=\left.f\right|_{y_{0}}=$ const and $\beta=\partial f /\left.\partial y\right|_{y_{0}}=$ const
it follows that $D f / D t=D / D t\left(f_{0}+\beta y\right)=\boldsymbol{u} \cdot \nabla(\beta y)=\beta v$

- quasi-geostrophic potential vorticity (PV) equation
$\frac{D}{D t} \frac{g}{f}\left(\nabla^{2} h-R^{-2} h\right)+\beta v=\frac{D}{D t}\left[\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f_{0}+\beta y\right]=0$
with material derivative $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \nabla$
- " β-plane" approximation was used at $y^{\prime}=y_{0}+\Delta y$:

$$
f\left(y^{\prime}\right)=\left.f\right|_{y_{0}}+\left.\frac{\partial f}{\partial y}\right|_{y_{0}} \Delta y+\ldots \approx f_{0}+\beta \Delta y \equiv f_{0}+\beta y
$$

with $f_{0}=\left.f\right|_{y_{0}}=$ const and $\beta=\partial f /\left.\partial y\right|_{y_{0}}=$ const
it follows that $D f / D t=D / D t\left(f_{0}+\beta y\right)=\boldsymbol{u} \cdot \nabla(\beta y)=\beta v$

- quasi-geostrophic PV is approximation to full PV for single layer

$$
\frac{D}{D t}\left(\frac{\zeta+f}{h}\right)=0
$$

- full potential vorticity (PV) equation can be derived from full equations for single layer (see exercises)
- full potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f
$$

- full potential vorticity equation

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\begin{aligned}
& \quad \frac{D q}{D t}=0, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f=\zeta-\frac{f_{0}}{H} h+f \\
& \text { with } \zeta \approx\left(g / f_{0}\right) \nabla^{2} h \text { and } f=f_{0}+\beta y \text { and } R^{2}=g H / f_{0}^{2}
\end{aligned}
$$

- full potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f=\zeta-\frac{f_{0}}{H} h+f
$$

$$
\text { with } \zeta \approx\left(g / f_{0}\right) \nabla^{2} h \text { and } f=f_{0}+\beta y \text { and } R^{2}=g H / f_{0}^{2}
$$

- approximate full q

$$
\frac{\zeta+f}{h}=\frac{\zeta}{H+\eta}+\frac{f_{0}}{H+\eta}+\frac{\beta y}{H+\eta}
$$

- full potential vorticity equation

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f=\zeta-\frac{f_{0}}{H} h+f
$$

with $\zeta \approx\left(g / f_{0}\right) \nabla^{2} h$ and $f=f_{0}+\beta y$ and $R^{2}=g H / f_{0}^{2}$

- approximate full q using $|\zeta| \ll|f|$ and $|\beta y| \ll\left|f_{0}\right|$ and $|\eta| \ll|H|$

$$
\begin{aligned}
\frac{\zeta+f}{h} & =\frac{\zeta}{H+\eta}+\frac{f_{0}}{H+\eta}+\frac{\beta y}{H+\eta} \\
& =\frac{\zeta}{H}+O(R o)+\frac{f_{0} / H}{1+\eta / H}+\frac{\beta y}{H}+O(R o)
\end{aligned}
$$

- full potential vorticity equation

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f=\zeta-\frac{f_{0}}{H} h+f
$$

with $\zeta \approx\left(g / f_{0}\right) \nabla^{2} h$ and $f=f_{0}+\beta y$ and $R^{2}=g H / f_{0}^{2}$

- approximate full q using $|\zeta| \ll|f|$ and $|\beta y| \ll\left|f_{0}\right|$ and $|\eta| \ll|H|$

$$
\begin{aligned}
\frac{\zeta+f}{h} & =\frac{\zeta}{H+\eta}+\frac{f_{0}}{H+\eta}+\frac{\beta y}{H+\eta} \\
& =\frac{\zeta}{H}+O(R o)+\frac{f_{0} / H}{1+\eta / H}+\frac{\beta y}{H}+O(R o) \\
& =\frac{\zeta}{H}+\frac{f_{0}}{H}\left(1-\frac{\eta}{H}\right)+\frac{\beta y}{H}+O(R o)
\end{aligned}
$$

with $1 /(1+x) \approx 1-x$ for small $x=\eta / H$

- full potential vorticity equation

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f=\zeta-\frac{f_{0}}{H} h+f
$$

with $\zeta \approx\left(g / f_{0}\right) \nabla^{2} h$ and $f=f_{0}+\beta y$ and $R^{2}=g H / f_{0}^{2}$
\checkmark approximate full q using $|\zeta| \ll|f|$ and $|\beta y| \ll\left|f_{0}\right|$ and $|\eta| \ll|H|$

$$
\begin{aligned}
\frac{\zeta+f}{h} & =\frac{\zeta}{H+\eta}+\frac{f_{0}}{H+\eta}+\frac{\beta y}{H+\eta} \\
& =\frac{\zeta}{H}+O(R o)+\frac{f_{0} / H}{1+\eta / H}+\frac{\beta y}{H}+O(R o) \\
& =\frac{\zeta}{H}+\frac{f_{0}}{H}\left(1-\frac{\eta}{H}\right)+\frac{\beta y}{H}+O(R o) \\
& =\left(\zeta+f_{0}-\left(f_{0} / H\right) \eta+\beta y\right) / H+O(R o)
\end{aligned}
$$

with $1 /(1+x) \approx 1-x$ for small $x=\eta / H$

- full potential vorticity equation

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h}
$$

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f_{0}}\left(\nabla^{2} h-R^{-2} h\right)+f=\zeta-\frac{f_{0}}{H} h+f
$$

with $\zeta \approx\left(g / f_{0}\right) \nabla^{2} h$ and $f=f_{0}+\beta y$ and $R^{2}=g H / f_{0}^{2}$
\checkmark approximate full q using $|\zeta| \ll|f|$ and $|\beta y| \ll\left|f_{0}\right|$ and $|\eta| \ll|H|$

$$
\begin{aligned}
\frac{\zeta+f}{h} & =\frac{\zeta}{H+\eta}+\frac{f_{0}}{H+\eta}+\frac{\beta y}{H+\eta} \\
& =\frac{\zeta}{H}+O(R o)+\frac{f_{0} / H}{1+\eta / H}+\frac{\beta y}{H}+O(R o) \\
& =\frac{\zeta}{H}+\frac{f_{0}}{H}\left(1-\frac{\eta}{H}\right)+\frac{\beta y}{H}+O(R o) \\
& =\left(\zeta+f_{0}-\left(f_{0} / H\right) \eta+\beta y\right) / H+O(R o) \\
& =\left(\zeta-\left(f_{0} / H\right) h+f\right) / H+f_{0} / H+O(R o)
\end{aligned}
$$

with $1 /(1+x) \approx 1-x$ for small $x=\eta / H$

- potential vorticity equation for a single layer

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h} \text { or } q=\zeta-\frac{f_{0}}{H} h+f
$$

q is conserved for fluid parcels in single layer

- potential vorticity equation for a single layer

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{\zeta+f}{h} \text { or } q=\zeta-\frac{f_{0}}{H} h+f
$$

q is conserved for fluid parcels in single layer

- $h=$ const, ζ initially zero, parcel moves northward f increases but $q=(f+\zeta) / h$ has to stay constant $\rightarrow \zeta=\partial v / \partial x-\partial u / \partial y$ decreases \rightarrow anticyclonic rotation

$u=-a y, v=0 \rightarrow \zeta=a>0$: cyclonic (anticlockwise) rotation $u=+a y, v=0 \rightarrow \zeta=a<0$: anticyclonic (clockwise) rotation
- potential vorticity equation for a single layer

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{\zeta+f}{h} \text { or } q=\zeta-\frac{f_{0}}{H} h+f
$$

q is conserved for fluid parcels in single layer

- $h=$ const, ζ initially zero, parcel moves northward f increases but $q=(f+\zeta) / h$ has to stay constant $\rightarrow \zeta=\partial v / \partial x-\partial u / \partial y$ decreases \rightarrow anticyclonic rotation
- $h=$ const, ζ initially zero, parcel moves southward
$\rightarrow \zeta=\partial v / \partial x-\partial u / \partial y$ increases \rightarrow more cyclonic rotation

$u=-a y, v=0 \rightarrow \zeta=a>0$: cyclonic (anticlockwise) rotation
$u=+a y, v=0 \rightarrow \zeta=a<0:$ anticyclonic (clockwise) rotation
- potential vorticity equation for a single layer

$$
\frac{D q}{D t}=0, \quad q=\frac{\zeta+f}{h} \text { or } q=\zeta-\frac{f_{0}}{H} h+f
$$

q is conserved for fluid parcels in single layer

- $f=$ const, ζ initially zero, parcel moves to deeper water $\rightarrow \zeta=\partial v / \partial x-\partial u / \partial y$ increases \rightarrow cyclonic rotation

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f}\left(\nabla^{2} h-R^{-2} h\right)+f_{0}+\beta y
$$

q is (approximately) conserved in single layer for $R o \ll 1$

- $\zeta=(g / f) \nabla^{2} h$ is relative vorticity
- $-(g / f) R^{-2} h$ is stretching vorticity
- $f=f_{0}+\beta y$ is planetary vorticity
- h is streamfunction for the quasi-geostrophic flow

- quasi-geostrophic potential vorticity equation

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{g}{f}\left(\nabla^{2} h-R^{-2} h\right)+f_{0}+\beta y
$$

q is (approximately) conserved in single layer for $R o \ll 1$

- $\psi=g h / f_{0}$ is streamfunction for the quasi-geostrophic flow

$$
u \approx-\frac{g}{f_{0}} \frac{\partial h}{\partial y}=-\frac{\partial \psi}{\partial y} \quad, \quad v \approx \frac{g}{f_{0}} \frac{\partial h}{\partial x}=\frac{\partial \psi}{\partial x}
$$

$$
\begin{aligned}
\boldsymbol{u} & =\binom{-\partial \psi / \partial y}{\partial \psi / \partial x} \\
& =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \times\left(\begin{array}{c}
\partial \psi / \partial x \\
\partial \psi / \partial y \\
0
\end{array}\right)=\boldsymbol{k} \times \nabla \psi
\end{aligned}
$$

- \boldsymbol{u} (blue arrow): anti-clockwise rotation of $\nabla \psi$ (red arrow) by 90°

Recapitulation

Layered models
Gravity waves without rotation Gravity waves with rotation

Waves
Kelvin waves
Quasi-geostrophic approximation Potential vorticity
Geostrophic adjustment

- consider the (linearized) layered model with $f=$ const

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \quad \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- consider the (linearized) layered model with $f=$ const

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \quad \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- (linearized, $D / D t \rightarrow \partial / \partial t$) potential vorticity equation

$$
\frac{\partial q}{\partial t}=0, \quad q=\frac{\zeta+f}{h} \approx\left(\zeta-\frac{f}{H} h+f\right) / H
$$

- f in q for $f=$ const does not matter $\rightarrow q=\zeta-(f / H) h$
- consider the (linearized) layered model with $f=$ const

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \quad \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- (linearized, $D / D t \rightarrow \partial / \partial t$) potential vorticity equation

$$
\frac{\partial q}{\partial t}=0 \quad, \quad q=\frac{\zeta+f}{h} \approx\left(\zeta-\frac{f}{H} h+f\right) / H
$$

- f in q for $f=$ const does not matter $\rightarrow q=\zeta-(f / H) h$
- consider as initial condition $\boldsymbol{u}=0$ and h a step function such that

$$
\left.h\right|_{t=0}=\left\{\begin{array}{rl}
h_{0}, & \text { if } x<0 \\
-h_{0}, & \text { if } x>0
\end{array} \rightarrow q_{0}=\left.q\right|_{t=0}=\left\{\begin{aligned}
-f h_{0} / H, & \text { if } x<0 \\
f h_{0} / H, & \text { if } x>0
\end{aligned}\right.\right.
$$

- consider the (linearized) layered model with $f=$ const

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \quad \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- (linearized, $D / D t \rightarrow \partial / \partial t$) potential vorticity equation

$$
\frac{\partial q}{\partial t}=0 \quad, \quad q=\frac{\zeta+f}{h} \approx\left(\zeta-\frac{f}{H} h+f\right) / H
$$

- f in q for $f=$ const does not matter $\rightarrow q=\zeta-(f / H) h$
- consider as initial condition $\boldsymbol{u}=0$ and h a step function such that

$$
\left.h\right|_{t=0}=\left\{\begin{array}{rl}
h_{0}, & \text { if } x<0 \\
-h_{0}, & \text { if } x>0
\end{array} \rightarrow q_{0}=\left.q\right|_{t=0}=\left\{\begin{aligned}
-f h_{0} / H, & \text { if } x<0 \\
f h_{0} / H, & \text { if } x>0
\end{aligned}\right.\right.
$$

- using $q(t)=q_{0}$ steady state solution $(t \rightarrow \infty)$ is given by

$$
\begin{array}{r}
f v_{\infty}=g \frac{\partial h_{\infty}}{\partial x}, f u_{\infty}=-g \frac{\partial h_{\infty}}{\partial y} \\
\rightarrow q_{\infty}=\frac{g}{f} \frac{\partial^{2} h_{\infty}}{\partial x^{2}}+\frac{g}{f} \frac{\partial^{2} h_{\infty}}{\partial y^{2}}-\frac{f}{H} h_{\infty}=q_{0}
\end{array}
$$

$\rightarrow \nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}$ with Rossby radius $R=\sqrt{g H} /|f|$

- steady state solution $(t \rightarrow \infty)$ is given by

$$
\nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}=\left\{\begin{aligned}
-R^{-2} h_{0}, & \text { if } x<0 \\
R^{-2} h_{0}, & \text { if } x>0
\end{aligned}\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- steady state solution $(t \rightarrow \infty)$ is given by

$$
\nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}=\left\{\begin{aligned}
-R^{-2} h_{0}, & \text { if } x<0 \\
R^{-2} h_{0}, & \text { if } x>0
\end{aligned}\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- solution of h_{∞} is given by

$$
h(x)_{\infty}=\left\{\begin{array}{cc}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.
$$

- steady state solution $(t \rightarrow \infty)$ is given by

$$
\nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}=\left\{\begin{aligned}
-R^{-2} h_{0}, & \text { if } x<0 \\
R^{-2} h_{0}, & \text { if } x>0
\end{aligned}\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- solution of h_{∞} is given by

$$
h(x)_{\infty}=\left\{\begin{array}{cc}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.
$$

- since for $x<0 h_{\infty}^{\prime}=-h_{0} / R e^{x / R}$ and $h_{\infty}^{\prime \prime}=-h_{0} / R^{2} e^{x / R}$ and

$$
h_{\infty}^{\prime \prime}-R^{-2} h_{\infty}=-h_{0} R^{-2} e^{x / R}-R^{-2} h_{0}\left(1-e^{x / R}\right)=-R^{-2} h_{0}
$$

- steady state solution $(t \rightarrow \infty)$ is given by

$$
\nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}=\left\{\begin{aligned}
-R^{-2} h_{0}, & \text { if } x<0 \\
R^{-2} h_{0}, & \text { if } x>0
\end{aligned}\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- solution of h_{∞} is given by

$$
h(x)_{\infty}=\left\{\begin{array}{cc}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.
$$

- since for $x<0 h_{\infty}^{\prime}=-h_{0} / R e^{x / R}$ and $h_{\infty}^{\prime \prime}=-h_{0} / R^{2} e^{x / R}$ and

$$
h_{\infty}^{\prime \prime}-R^{-2} h_{\infty}=-h_{0} R^{-2} e^{x / R}-R^{-2} h_{0}\left(1-e^{x / R}\right)=-R^{-2} h_{0}
$$

- since for $x>0 h_{\infty}^{\prime}=-h_{0} / R e^{-x / R}$ and $h_{\infty}^{\prime \prime}=h_{0} / R^{2} e^{-x / R}$ and

$$
h_{\infty}^{\prime \prime}-R^{-2} h_{\infty}=h_{0} R^{-2} e^{-x / R}+R^{-2} h_{0}\left(1-e^{-x / R}\right)=R^{-2} h_{0}
$$

- initial and steady state solution of h are given by

$$
\left.h\right|_{t=0}=\left\{\begin{array}{rl}
h_{0}, & \text { if } x<0 \\
-h_{0}, & \text { if } x>0
\end{array} \quad,\left.\quad h\right|_{\infty}=\left\{\begin{array}{cl}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- initial and steady state solution of h are given by

$$
\left.h\right|_{t=0}=\left\{\begin{array}{rl}
h_{0}, & \text { if } x<0 \\
-h_{0}, & \text { if } x>0
\end{array} \quad,\left.\quad h\right|_{\infty}=\left\{\begin{array}{cl}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- velocities from $f v_{\infty}=g \partial h_{\infty} / \partial x$ and $f u_{\infty}=-g \partial h_{\infty} / \partial y$

$$
u_{\infty}=0, \quad v_{\infty}=(g / f)\left\{\begin{array}{ll}
-h_{0} / R e^{x / R}, & \text { if } x<0 \\
-h_{0} / R e^{-x / R}, & \text { if } x>0
\end{array}=-\frac{g h_{0}}{f R} e^{-|x| / R}\right.
$$

