Dynamische und regionale Ozeanographie WS 2015/16

Carsten Eden und Detlef Quadfasel

Institut für Meereskunde, Universität Hamburg

November 23, 2015

11 - Waves and Instabilities

Recapitulation

Layered models Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation Potential vorticity Geostrophic adjustment

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3/41

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recapitulation Layered models

Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation Potential vorticity Geostrophic adjustment "barotropic" and "baroclinic" layered model

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{f} \boldsymbol{v} = -g \frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{v} + \boldsymbol{f} \boldsymbol{u} = -g \frac{\partial h}{\partial y}$$
$$\frac{Dh}{Dt} + h \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

- ▶ *h* is total thickness ("barotropic") or layer interface *h_i* ("baroclinic")
- ▶ either $g = 9.81\,{
 m m/s^2}$ ("barotropic") or $g o g\Delta
 ho/
 ho_0$ ("baroclinic")

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recapitulation

Gravity waves without rotation

Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation Potential vorticity Geostrophic adjustment

$$\frac{\partial u}{\partial t} - \mathbf{f} = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + \mathbf{f} u = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{\partial u}{\partial t} - \mathscr{H} = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + \mathscr{H} = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\frac{\partial \boldsymbol{u}}{\partial t} = - g \boldsymbol{\nabla} h , \qquad \frac{\partial h}{\partial t} + H \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{\nabla} \cdot \boldsymbol{g} \boldsymbol{\nabla} \boldsymbol{h} \ , \ \frac{\partial}{\partial t} \frac{\partial \boldsymbol{h}}{\partial t} + \frac{\partial}{\partial t} \boldsymbol{H} \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \ \rightarrow \ \frac{\partial^2 \boldsymbol{h}}{\partial t^2} - \boldsymbol{g} \boldsymbol{H} \boldsymbol{\nabla}^2 \boldsymbol{h} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{\nabla} \cdot \boldsymbol{g} \boldsymbol{\nabla} \boldsymbol{h} \; , \; \frac{\partial}{\partial t} \frac{\partial \boldsymbol{h}}{\partial t} + \frac{\partial}{\partial t} \boldsymbol{H} \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \; \rightarrow \; \frac{\partial^2 \boldsymbol{h}}{\partial t^2} - \boldsymbol{g} \boldsymbol{H} \boldsymbol{\nabla}^2 \boldsymbol{h} = 0$$

• wave solution $h = A \exp i(k_1 x + k_2 y - \omega t) = A \exp i(\mathbf{k} \cdot \mathbf{x}_h - \omega t)$

$$\frac{\partial h}{\partial t} = -i\omega A \exp i(...) \quad , \quad \frac{\partial^2 h}{\partial t^2} = (i\omega)^2 A \exp i(...) = -\omega^2 A \exp i(...)$$

with wavenumber vector $\boldsymbol{k} = (k_1, k_2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{\nabla} \cdot \boldsymbol{g} \boldsymbol{\nabla} \boldsymbol{h} \; , \; \frac{\partial}{\partial t} \frac{\partial \boldsymbol{h}}{\partial t} + \frac{\partial}{\partial t} \boldsymbol{H} \boldsymbol{\nabla} \cdot \boldsymbol{u} = \boldsymbol{0} \; \rightarrow \; \frac{\partial^2 \boldsymbol{h}}{\partial t^2} - \boldsymbol{g} \boldsymbol{H} \boldsymbol{\nabla}^2 \boldsymbol{h} = \boldsymbol{0}$$

• wave solution $h = A \exp i(k_1 x + k_2 y - \omega t) = A \exp i(\mathbf{k} \cdot \mathbf{x}_h - \omega t)$

$$\begin{array}{ll} \frac{\partial h}{\partial t} &= -i\omega A \exp i(\ldots) &, \ \frac{\partial^2 h}{\partial t^2} = (i\omega)^2 A \exp i(\ldots) = -\omega^2 A \exp i(\ldots) \\ \nabla h &= i \mathbf{k} A \exp i(\ldots) &, \ \nabla \cdot \nabla h = i^2 \mathbf{k} \cdot \mathbf{k} A \exp i(\ldots) = -k^2 A \exp i(\ldots) \\ \text{with wavenumber vector } \mathbf{k} = (k_1, k_2) \text{ and } k = |\mathbf{k}| = \sqrt{k_1^2 + k_2^2} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{\nabla} \cdot \boldsymbol{g} \boldsymbol{\nabla} \boldsymbol{h} \ , \ \frac{\partial}{\partial t} \frac{\partial \boldsymbol{h}}{\partial t} + \frac{\partial}{\partial t} \boldsymbol{H} \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \ \rightarrow \ \frac{\partial^2 \boldsymbol{h}}{\partial t^2} - \boldsymbol{g} \boldsymbol{H} \boldsymbol{\nabla}^2 \boldsymbol{h} = 0$$

• wave solution $h = A \exp i(k_1 x + k_2 y - \omega t) = A \exp i(\mathbf{k} \cdot \mathbf{x}_h - \omega t)$

$$\begin{array}{ll} \frac{\partial h}{\partial t} &= -i\omega A \exp i(\ldots) &, \ \frac{\partial^2 h}{\partial t^2} = (i\omega)^2 A \exp i(\ldots) = -\omega^2 A \exp i(\ldots) \\ \nabla h &= i \mathbf{k} A \exp i(\ldots) &, \ \nabla \cdot \nabla h = i^2 \mathbf{k} \cdot \mathbf{k} A \exp i(\ldots) = -k^2 A \exp i(\ldots) \\ \text{with wavenumber vector } \mathbf{k} = (k_1, k_2) \text{ and } k = |\mathbf{k}| = \sqrt{k_1^2 + k_2^2} \end{array}$$

$$-\omega^2 \exp i(..) + k^2 g H \exp i(..) = 0 \rightarrow \omega^2 = k^2 g H \rightarrow \omega = \pm k \sqrt{g H}$$

which is still the dispersion relation for a gravity wave (for $f = 0$)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- plane wave in two dimensions is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- wavenumber vector \boldsymbol{k} gives direction of phase propagation

• wavenumber vector \boldsymbol{k} gives direction of phase propagation

• wavelength
$$\lambda = 2\pi/k = 2\pi/\sqrt{k_1^2 + k_2^2}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

- plane wave in two dimensions is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- wavenumber vector k gives direction of phase propagation
- wavelength $\lambda = 2\pi/k = 2\pi/\sqrt{k_1^2 + k_2^2}$
- ▶ phase propagates from t = 0 to t = Δt the distance Δs = cΔt → phase velocity c in two dimensions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$h \approx 2A\cos\left(\frac{\Delta \mathbf{k}}{2} \cdot [\mathbf{x} - \mathbf{c}_g t]\right)\cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$$

with the wavenumber difference $\Delta \mathbf{k} = \mathbf{k}' - \mathbf{k}$ and the group velocity $\mathbf{c}_{g} = \left(\frac{\partial \omega}{\partial k_{1}}, \frac{\partial \omega}{\partial k_{2}}\right) = \partial \omega / \partial \mathbf{k}$

▶ amplitude modulation with speed c_g and wave length Δk

- c_g is the speed at which the amplitudes (energy) propagates
- while c is the propagation speed of the phase (in the direction k)
- both are in general different and different from particle velocity

9/41

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recapitulation

Layered models Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation Potential vorticity Geostrophic adjustment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• thickness, curl and divergence for f = const

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v / \partial x - \partial u / \partial y$ and $\xi = \partial u / \partial x + \partial v / \partial y$

• thickness, curl and divergence for f = const

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v / \partial x - \partial u / \partial y$ and $\xi = \partial u / \partial x + \partial v / \partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• thickness, curl and divergence for f = const

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v / \partial x - \partial u / \partial y$ and $\xi = \partial u / \partial x + \partial v / \partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$
$$\frac{\partial^2}{\partial t^2} \xi + f^2 \xi = g H \nabla^2 \xi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• thickness, curl and divergence for f = const

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v / \partial x - \partial u / \partial y$ and $\xi = \partial u / \partial x + \partial v / \partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$
$$\frac{\partial^2}{\partial t^2} \xi + f^2 \xi = g H \nabla^2 \xi$$
$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - (g H/f^2) \nabla^2 \xi \right) = 0$$

• thickness, curl and divergence for f = const

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$
$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v / \partial x - \partial u / \partial y$ and $\xi = \partial u / \partial x + \partial v / \partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$
$$\frac{\partial^2}{\partial t^2} \xi + f^2 \xi = g H \nabla^2 \xi$$
$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - (g H/f^2) \nabla^2 \xi \right) = 0$$
$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \nabla^2 \xi \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(ロ)、(型)、(E)、(E)、 E) の(の)

• combined thickness, curl and divergence eq. for f = const

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• combined thickness, curl and divergence eq. for f = const

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R=\sqrt{gH}/|f|$

look for wave solutions

$$\xi(x, y, t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0

(ロ)、(型)、(E)、(E)、 E) の(の)

• combined thickness, curl and divergence eq. for f = const

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

look for wave solutions

$$\xi(x, y, t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0 which yields

$$(-i\omega)^2 \xi_0 \exp(...) + f^2 \left(1 - R^2 (ik_1)^2 - R^2 (ik_2)^2\right) \xi_0 \exp(...) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• combined thickness, curl and divergence eq. for f = const

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

look for wave solutions

$$\xi(x, y, t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0 which yields

$$(-i\omega)^2 \xi_0 \exp(...) + f^2 \left(1 - R^2 (ik_1)^2 - R^2 (ik_2)^2\right) \xi_0 \exp(...) = 0$$

$$-\omega^2 + f^2 \left(1 + R^2 k_1^2 + R^2 k_2^2\right) = 0$$

• combined thickness, curl and divergence eq. for f = const

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R=\sqrt{gH}/|f|$

look for wave solutions

$$\xi(x, y, t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0 which yields

$$(-i\omega)^2 \xi_0 \exp(...) + f^2 \left(1 - R^2 (ik_1)^2 - R^2 (ik_2)^2\right) \xi_0 \exp(...) = 0$$

$$-\omega^2 + f^2 \left(1 + R^2 k_1^2 + R^2 k_2^2\right) = 0$$

this is a (plane wave) solution as long as ω satisfies

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

with $k^2 = |\mathbf{k}|^2 = k_1^2 + k_2^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2 \right)} \;\;,\;\;\; c = \pm \sqrt{f^2 \left(1/k^2 + R^2 \right)}$$

200

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2
ight)} \;\;,\;\;\; c = \pm \sqrt{f^2 \left(1/k^2 + R^2
ight)}$$

▶ different phase velocity $c = \omega/k$ for different $k \rightarrow$ dispersive wave

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$
, $c = \pm \sqrt{f^2 \left(1/k^2 + R^2\right)}$

- ▶ different phase velocity $c = \omega/k$ for different $k \rightarrow$ dispersive wave
- short wave limit for $\lambda = 2\pi/k \ll R o R^2 k^2 \gg 1$

$$\omega \stackrel{Rk \to \infty}{=} \pm \sqrt{f^2 R^2 k^2} = \pm k \sqrt{gH}$$

୬୯୯

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$
, $c = \pm \sqrt{f^2 \left(1/k^2 + R^2\right)}$

- ▶ different phase velocity $c = \omega/k$ for different $k \rightarrow$ dispersive wave
- short wave limit for $\lambda = 2\pi/k \ll R o R^2 k^2 \gg 1$

$$\omega \stackrel{Rk \to \infty}{=} \pm \sqrt{f^2 R^2 k^2} = \pm k \sqrt{gH} \quad , \quad c \stackrel{Rk \to \infty}{=} \pm \sqrt{gH}$$

ightarrow (non-dispersive) gravity waves without rotation (black lines)

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2
ight)} \;\;,\;\;\; c = \pm \sqrt{f^2 \left(1/k^2 + R^2
ight)}$$

▶ different phase velocity $c = \omega/k$ for different $k \rightarrow$ dispersive wave

,

13/41

• gravity wave dispersion relation ($f \neq 0$ in blue, f = 0 in black)

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$
, $c = \pm \sqrt{f^2 \left(1/k^2 + R^2\right)}$

- \blacktriangleright different phase velocity $c=\omega/k$ for different \pmb{k} \rightarrow dispersive wave
- ▶ long wave limit for $\lambda = 2\pi/k \gg R \rightarrow R^2 k^2 \ll 1$

$$\omega \stackrel{Rk \to 0}{=} \pm f$$
 , $c \stackrel{Rk \to 0}{=} \pm \infty$

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2 \right)} \;\;,\;\;\; c = \pm \sqrt{f^2 \left(1/k^2 + R^2 \right)}$$

- \blacktriangleright different phase velocity ${\pmb c}=\omega/k$ for different ${\pmb k}$ \rightarrow dispersive wave
- ▶ long wave limit for $\lambda = 2\pi/k \gg R \rightarrow R^2 k^2 \ll 1$

$$\omega \stackrel{Rk \to 0}{=} \pm f$$
 , $c \stackrel{Rk \to 0}{=} \pm \infty$

these are inertial oscillations which also result from

$$\partial u/\partial t - fv = 0$$
, $\partial v/\partial t + fu = 0$

590

• trajectories of surface drifter \rightarrow inertial oscillations

from d'Asaro et al 1995

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2 \right)}$$

▶ group velocity is given by $c_g = (gH/\omega)k$ (red line for $f \neq 0$)

900

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

- ▶ group velocity is given by $c_g = (gH/\omega)k$ (red line for $f \neq 0$)
- short wave limit for $\lambda \ll R$

$$\omega \stackrel{\lambda \leq \!\!\!\leq R}{=} \pm k \sqrt{gH} \;\;, \;\; oldsymbol{c}_g \stackrel{\lambda \leq \!\!\!\leq R}{=} \pm \sqrt{gH} \, oldsymbol{k}/k = c \, oldsymbol{k}/k$$

900
- 15/41
- gravity wave dispersion relation ($f \neq 0$ in blue, f = 0 in black)

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

- ▶ group velocity is given by $c_g = (gH/\omega)k$ (red line for $f \neq 0$)
- short wave limit for $\lambda \ll R$

$$\omega \stackrel{\lambda \ll R}{=} \pm k \sqrt{gH} \; \; , \; \; \boldsymbol{c_g} \stackrel{\lambda \ll R}{=} \pm \sqrt{gH} \; \boldsymbol{k}/k = c \; \boldsymbol{k}/k$$

• long wave limit for $\lambda \gg R$

$$\omega \stackrel{\lambda \gg R}{=} \pm f$$
 , $\boldsymbol{c}_{g} \stackrel{\lambda \gg R}{=} 0$

900

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recapitulation

Layered models Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves

Quasi-geostrophic approximation Potential vorticity Geostrophic adjustment

Kelvin waves

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• suppose we have a solid boundary at $y = 0 \rightarrow v|_{y=0} = 0$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Kelvin waves

• consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

- ▶ suppose we have a solid boundary at $y = 0 \rightarrow v|_{y=0} = 0$
- look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \ fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

- ▶ suppose we have a solid boundary at $y = 0 \rightarrow v|_{y=0} = 0$
- look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \ fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0$$

combining the first and the last equation yields wave equation

$$\frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A \exp i(kx - \omega t)$, but now A = A(y)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

- ▶ suppose we have a solid boundary at $y = 0 \rightarrow v|_{y=0} = 0$
- look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \ fu = -g\frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0$$

combining the first and the last equation yields wave equation

$$\frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A \exp i(kx - \omega t)$, but now A = A(y)

- gravity wave (f = 0) in x with phase velocity $c = \pm \sqrt{gH}$
- for y dependency of A we consider the second equation

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \ \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0 \ \rightarrow \ \frac{\partial^2 h}{\partial t^2} - g H \frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k \sqrt{gH}$

for y dependency of A we consider the second equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• solid boundary at y = 0, look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \ \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0 \ \rightarrow \ \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k \sqrt{gH}$

- for y dependency of A we consider the second equation
- ► assume wave $u = U(y) \exp i(kx \omega t)$ with amplitude U from

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \rightarrow -i\omega U \exp i(...) = -gikA \exp i(...) \rightarrow U = g \frac{kA}{\omega}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• solid boundary at y = 0, look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \ \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0 \ \rightarrow \ \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k \sqrt{gH}$

- for y dependency of A we consider the second equation
- ► assume wave $u = U(y) \exp i(kx \omega t)$ with amplitude U from

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \rightarrow -i\omega U \exp i(...) = -gikA \exp i(...) \rightarrow U = g \frac{kA}{\omega}$$

using this in the second equation yields

$$fu = -g \frac{\partial h}{\partial y} \rightarrow (f/c)A = -A' \rightarrow A = A_0 e^{-f y/c} = A_0 e^{\pm y/R}$$

with $c = \omega/k = \pm \sqrt{gH}$ and with Rossby radius $R = \sqrt{gH}/|f|$

▶ solid boundary at y = 0, look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \ \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0 \ \rightarrow \ \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k \sqrt{gH}$

- for y dependency of A we consider the second equation
- ► assume wave $u = U(y) \exp i(kx \omega t)$ with amplitude U from

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \rightarrow -i\omega U \exp i(...) = -gikA \exp i(...) \rightarrow U = g \frac{kA}{\omega}$$

using this in the second equation yields

$$fu = -g \frac{\partial h}{\partial y} \rightarrow (f/c)A = -A' \rightarrow A = A_0 e^{-f y/c} = A_0 e^{\pm y/R}$$

with $c = \omega/k = \pm \sqrt{gH}$ and with Rossby radius $R = \sqrt{gH}/|f|$

- only the decaying solution in y is reasonable
- Kelvin wave

• Kelvin wave along solid boundary at y = 0

$$h = A_0 e^{\pm y/R} \exp i(kx - \omega t) , \ u = (gA_0/c) e^{\pm y/R} \exp i(kx - \omega t) , \ v = 0$$

and $\omega = \pm k \sqrt{gH}$ and with Rossby radius $R = \sqrt{gH}/|f|$

- only the decaying solution in y is reasonable
- works in the same way for boundary along x or any other direction

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

tidal Kelvin wave in the North Sea

from Klett (2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recapitulation

Layered models Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation Potential vorticity

Geostrophic adjustment

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

"barotropic model" and "baroclinic model"

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f \boldsymbol{v} = -g \frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f \boldsymbol{u} = -g \frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) + \frac{\partial}{\partial y} (vh) = 0$$

- ▶ *h* is total thickness ("barotropic") or layer interface *h_i* ("baroclinic")
- ▶ either $g = 9.81 \, {
 m m/s^2}$ ("barotropic") or $g o g \Delta
 ho /
 ho_0$ ("baroclinic")

• consider the layered model (first without $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ for simplicity)

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

• consider the layered model (first without $\boldsymbol{u} \cdot \nabla \boldsymbol{u}$ for simplicity)

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial x} + \frac{\partial}{\partial x}(fu) = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial y} - \frac{\partial}{\partial y}(fv) = -g\frac{\partial}{\partial y}\frac{\partial h}{\partial x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• consider the layered model (first without $\boldsymbol{u} \cdot \nabla \boldsymbol{u}$ for simplicity)

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial x} + \frac{\partial}{\partial x}(fu) = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial y} - \frac{\partial}{\partial y}(fv) = -g\frac{\partial}{\partial y}\frac{\partial h}{\partial x}$$

subtract both

$$\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial x}(fu) + \frac{\partial}{\partial y}(fv) = 0$$

with relative vorticity $\zeta = \partial v / \partial x - \partial u / \partial y$

Waves

• consider the layered model (first without $\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ for simplicity)

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial x} + \frac{\partial}{\partial x}(fu) = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial y} - \frac{\partial}{\partial y}(fv) = -g\frac{\partial}{\partial y}\frac{\partial h}{\partial x}$$

subtract both

$$\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial x} (fu) + \frac{\partial}{\partial y} (fv) = 0$$
$$\frac{\partial \zeta}{\partial t} + f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \beta v = 0$$

with relative vorticity $\zeta = \partial v / \partial x - \partial u / \partial y$ and with $\beta = \partial f / \partial y$

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \qquad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \qquad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

assume small Rossby number Ro, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

• relative vorticity ζ becomes

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

• relative vorticity ζ becomes

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x} \left(\frac{g}{f} \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial y} \left(-\frac{g}{f} \frac{\partial h}{\partial y} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \qquad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

• relative vorticity ζ becomes

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x} \left(\frac{g}{f} \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial y} \left(-\frac{g}{f} \frac{\partial h}{\partial y} \right)$$
$$= \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) - \frac{g}{f^2} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y}$$

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \qquad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

• relative vorticity ζ becomes

$$\begin{aligned} \zeta &= \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x} \left(\frac{g}{f} \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial y} \left(-\frac{g}{f} \frac{\partial h}{\partial y} \right) \\ &= \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) - \frac{g}{f^2} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \approx \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) \end{aligned}$$

assuming $|(g\beta/f^2)\partial h/\partial y|\ll |\partial v/\partial x|$, i.e small variations of f

$$\frac{g}{f^2}\frac{\partial h}{\partial y}\frac{\partial f}{\partial y}\sim \frac{U}{\Omega}\frac{\Omega}{a}$$

with Earth radius a

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \qquad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

relative vorticity ζ becomes

$$\begin{aligned} \zeta &= \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x} \left(\frac{g}{f} \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial y} \left(-\frac{g}{f} \frac{\partial h}{\partial y} \right) \\ &= \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) - \frac{g}{f^2} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \approx \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) \end{aligned}$$

assuming $|(g\beta/f^2)\partial h/\partial y| \ll |\partial v/\partial x|$, i.e small variations of f

$$\frac{g}{f^2}\frac{\partial h}{\partial y}\frac{\partial f}{\partial y}\sim \frac{U}{\Omega}\frac{\Omega}{a} \ , \ \frac{\partial v}{\partial x}\sim \frac{U}{L}$$

with Earth radius a

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ assume small Rossby number *Ro*, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• then $v \approx (g/f) \partial h/\partial x$ and $u \approx -(g/f) \partial h/\partial y$

relative vorticity ζ becomes

$$\begin{aligned} \zeta &= \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \approx \frac{\partial}{\partial x} \left(\frac{g}{f} \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial y} \left(-\frac{g}{f} \frac{\partial h}{\partial y} \right) \\ &= \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) - \frac{g}{f^2} \frac{\partial h}{\partial y} \frac{\partial f}{\partial y} \approx \frac{g}{f} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) \end{aligned}$$

assuming $|(g\beta/f^2)\partial h/\partial y| \ll |\partial v/\partial x|$, i.e small variations of f

$$\frac{g}{f^2}\frac{\partial h}{\partial y}\frac{\partial f}{\partial y} \sim \frac{U}{\Omega}\frac{\Omega}{a} , \ \frac{\partial v}{\partial x} \sim \frac{U}{L} \rightarrow \frac{U}{a} \ll \frac{U}{L} \text{ if } L \ll a$$

with Earth radius a, i.e. only length scales L smaller than a are valid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

assume small Rossby number Ro, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

assume small Rossby number Ro, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

► curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = 0$$
$$\frac{g}{f}\frac{\partial}{\partial t}\nabla^2 h - \frac{f}{H}\frac{\partial h}{\partial t} + \beta \frac{g}{f}\frac{\partial h}{\partial x} \approx 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

assume small Rossby number Ro, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ curl $\zeta \approx (g/f) (\partial^2 h / \partial x^2 + \partial^2 h / \partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = 0$$

$$\frac{g}{f} \frac{\partial}{\partial t} \nabla^2 h - \frac{f}{H} \frac{\partial h}{\partial t} + \beta \frac{g}{f} \frac{\partial h}{\partial x} \approx 0$$

$$\frac{\partial}{\partial t} \left(\nabla^2 h - R^{-2} h\right) + \beta \frac{\partial h}{\partial x} \approx 0$$

with the "Rossby radius" $R = \sqrt{gH}/|f|$ and Earth radius a

assume small Rossby number Ro, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = 0$$

$$\frac{g}{f}\frac{\partial}{\partial t}\nabla^2 h - \frac{f}{H}\frac{\partial h}{\partial t} + \beta \frac{g}{f}\frac{\partial h}{\partial x} \approx 0$$

$$\frac{\partial}{\partial t}\left(\nabla^2 h - R^{-2}h\right) + \beta \frac{\partial h}{\partial x} \approx 0$$

with the "Rossby radius" $R = \sqrt{gH}/|f|$ and Earth radius a

▶ single equation in *h*: quasi-geostrophic potential vorticity equation valid for $Ro \ll 1$ and $L \ll a$

quasi-geostrophic potential vorticity (PV) equation

$$\frac{\partial}{\partial t} \left(\nabla^2 h - R^{-2} h \right) + \beta \frac{\partial h}{\partial x} = 0$$

valid for $Ro \ll 1$ and $L \ll a$ with the "Rossby radius" $R = \sqrt{gH}/|f|$ and Earth radius a

- h is total thickness ("barotropic") or layer interface h_i ("baroclinic")
- ▶ either $g = 9.81\,{
 m m/s^2}$ ("barotropic") or $g o g\Delta
 ho/
 ho_0$ ("baroclinic")

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f \boldsymbol{v} = -g \frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f \boldsymbol{u} = -g \frac{\partial h}{\partial y}$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f \boldsymbol{v} = -g \frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f \boldsymbol{u} = -g \frac{\partial h}{\partial y}$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial x} + \frac{\partial}{\partial x}(\boldsymbol{u}\cdot\boldsymbol{\nabla}v) + \frac{\partial}{\partial x}(fu) = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial y} + \frac{\partial}{\partial y}(\boldsymbol{u}\cdot\boldsymbol{\nabla}u) - \frac{\partial}{\partial y}(fv) = -g\frac{\partial}{\partial y}\frac{\partial h}{\partial x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f \boldsymbol{v} = -g \frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f \boldsymbol{u} = -g \frac{\partial h}{\partial y}$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial x} + \frac{\partial}{\partial x}(\boldsymbol{u}\cdot\boldsymbol{\nabla}v) + \frac{\partial}{\partial x}(fu) = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial y} + \frac{\partial}{\partial y}(\boldsymbol{u}\cdot\boldsymbol{\nabla}u) - \frac{\partial}{\partial y}(fv) = -g\frac{\partial}{\partial y}\frac{\partial h}{\partial x}$$

subtract both

$$\frac{D\zeta}{Dt} + \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} + \frac{\partial}{\partial x} (f\boldsymbol{u}) + \frac{\partial}{\partial y} (f\boldsymbol{v}) = 0$$

with relative vorticity $\zeta = \partial v / \partial x - \partial u / \partial y$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{f} \boldsymbol{v} = -g \frac{\partial h}{\partial x} \quad , \quad \frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{v} + \boldsymbol{f} \boldsymbol{u} = -g \frac{\partial h}{\partial y}$$

▶ take curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial x} + \frac{\partial}{\partial x}(\boldsymbol{u}\cdot\boldsymbol{\nabla}v) + \frac{\partial}{\partial x}(fu) = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial y} + \frac{\partial}{\partial y}(\boldsymbol{u}\cdot\boldsymbol{\nabla}u) - \frac{\partial}{\partial y}(fv) = -g\frac{\partial}{\partial y}\frac{\partial h}{\partial x}$$

subtract both

$$\frac{D\zeta}{Dt} + \frac{\partial u}{\partial x} \cdot \nabla v - \frac{\partial u}{\partial y} \cdot \nabla u + \frac{\partial}{\partial x} (fu) + \frac{\partial}{\partial y} (fv) = 0$$
$$\frac{D\zeta}{Dt} + \frac{\partial u}{\partial x} \cdot \nabla v - \frac{\partial u}{\partial y} \cdot \nabla u + f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = 0$$

with relative vorticity $\zeta = \partial v / \partial x - \partial u / \partial y$ and with $\beta = \partial f / \partial y$

◆ロト ◆昼 → ◆ 臣 → ◆ 臣 → のへぐ

▶ curl of momentum equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{D\zeta}{Dt} + \frac{\partial u}{\partial x} \cdot \nabla v - \frac{\partial u}{\partial y} \cdot \nabla u + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v = 0$$

calculate

$$\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{y}} \cdot \boldsymbol{\nabla} \boldsymbol{u} =$$

(ロ)、(型)、(E)、(E)、 E) の(の)
$$\frac{D\zeta}{Dt} + \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} + f\left(\frac{\partial \boldsymbol{u}}{\partial x} + \frac{\partial \boldsymbol{v}}{\partial y}\right) + \beta \boldsymbol{v} = 0$$

calculate

$$\frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \frac{\partial u}{\partial y}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\frac{D\zeta}{Dt} + \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} + f\left(\frac{\partial \boldsymbol{u}}{\partial x} + \frac{\partial \boldsymbol{v}}{\partial y}\right) + \beta \boldsymbol{v} = 0$$

calculate

$$\frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \frac{\partial u}{\partial y}$$
$$= \frac{\partial v}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - \frac{\partial u}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)$$

$$\frac{D\zeta}{Dt} + \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} + f\left(\frac{\partial \boldsymbol{u}}{\partial x} + \frac{\partial \boldsymbol{v}}{\partial y}\right) + \beta \boldsymbol{v} = 0$$

calculate

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} &- \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} &= \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \\ &= \frac{\partial v}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - \frac{\partial u}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \\ &= \zeta \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\frac{D\zeta}{Dt} + \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} + f\left(\frac{\partial \boldsymbol{u}}{\partial x} + \frac{\partial \boldsymbol{v}}{\partial y}\right) + \beta \boldsymbol{v} = 0$$

calculate

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial x} \cdot \boldsymbol{\nabla} \boldsymbol{v} &- \frac{\partial \boldsymbol{u}}{\partial y} \cdot \boldsymbol{\nabla} \boldsymbol{u} &= \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \\ &= \frac{\partial v}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - \frac{\partial u}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \\ &= \zeta \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \end{aligned}$$

► now use $|\zeta| \ll |f| \rightarrow U/L \ll \Omega \rightarrow U/(\Omega L) = Ro \ll 1$

$$\frac{D\zeta}{Dt} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v \approx 0$$

for $\textit{Ro} \ll 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• assume again $Ro \ll 1$, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{Dh}{Dt} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{D\zeta}{Dt} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v \approx 0$$

• assume again $Ro \ll 1$, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{Dh}{Dt} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{D\zeta}{Dt} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v \approx 0$$
$$\frac{D}{Dt}\left(\frac{g}{f}\nabla^2 h\right) - \frac{f}{H}\frac{Dh}{Dt} + \beta \frac{g}{f}\frac{\partial h}{\partial x} \approx 0$$

▶ assume again *Ro* ≪ 1, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{Dh}{Dt} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{D\zeta}{Dt} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v \approx 0$$
$$\frac{D}{Dt}\left(\frac{g}{f}\nabla^{2}h\right) - \frac{f}{H}\frac{Dh}{Dt} + \beta \frac{g}{f}\frac{\partial h}{\partial x} \approx 0$$
$$\frac{D}{Dt}\left(\nabla^{2}h - R^{-2}h\right) + \beta \frac{\partial h}{\partial x} \approx 0$$

with the "Rossby radius" $R = \sqrt{gH}/|f|$ and Earth radius a

▶ assume again *Ro* ≪ 1, i.e. dominant geostrophic balance

$$O(Ro) - fv = -g\frac{\partial h}{\partial x} , \quad O(Ro) + fu = -g\frac{\partial h}{\partial y}$$
$$\frac{Dh}{Dt} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• curl $\zeta \approx (g/f) (\partial^2 h/\partial x^2 + \partial^2 h/\partial y^2)$ for $Ro \ll 1$ and $L \ll a$

$$\frac{D\zeta}{Dt} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \beta v \approx 0$$
$$\frac{D}{Dt}\left(\frac{g}{f}\nabla^{2}h\right) - \frac{f}{H}\frac{Dh}{Dt} + \beta \frac{g}{f}\frac{\partial h}{\partial x} \approx 0$$
$$\frac{D}{Dt}\left(\nabla^{2}h - R^{-2}h\right) + \beta \frac{\partial h}{\partial x} \approx 0$$

with the "Rossby radius" $R = \sqrt{gH}/|f|$ and Earth radius a

▶ non-linear quasi-geostrophic PV equation: ∂/∂t → D/Dt still valid only for Ro ≪ 1 and L ≪ a

• except for equatorial ocean, $Ro = |\zeta|/|f|$ is well below 0.1

・ロト・西ト・西ト・日・ 日・ シック

Recapitulation

Layered models Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation **Potential vorticity** Geostrophic adjustment

quasi-geostrophic potential vorticity (PV) equation

$$\frac{D}{Dt}\frac{g}{f}\left(\boldsymbol{\nabla}^{2}\boldsymbol{h}-\boldsymbol{R}^{-2}\boldsymbol{h}\right)+\beta\boldsymbol{v}=\frac{D}{Dt}\left[\frac{g}{f_{0}}\left(\boldsymbol{\nabla}^{2}\boldsymbol{h}-\boldsymbol{R}^{-2}\boldsymbol{h}\right)+f_{0}+\beta\boldsymbol{y}\right]=0$$

with material derivative $D/Dt = \partial/\partial t + \boldsymbol{u}\cdot\boldsymbol{\nabla}$

quasi-geostrophic potential vorticity (PV) equation

$$\frac{D}{Dt}\frac{g}{f}\left(\nabla^{2}h-R^{-2}h\right)+\beta v=\frac{D}{Dt}\left[\frac{g}{f_{0}}\left(\nabla^{2}h-R^{-2}h\right)+f_{0}+\beta y\right]=0$$

with material derivative $D/Dt = \partial/\partial t + \boldsymbol{u}\cdot\boldsymbol{\nabla}$

• " β -plane" approximation was used at $y' = y_0 + \Delta y$:

$$f(y') = f|_{y_0} + \frac{\partial f}{\partial y}|_{y_0} \Delta y + ... \approx f_0 + \beta \Delta y \equiv f_0 + \beta y$$

with $f_0 = f|_{y_0} = const$ and $\beta = \partial f / \partial y|_{y_0} = const$ it follows that $Df/Dt = D/Dt(f_0 + \beta y) = \mathbf{u} \cdot \nabla(\beta y) = \beta v$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

quasi-geostrophic potential vorticity (PV) equation

$$\frac{D}{Dt}\frac{g}{f}\left(\boldsymbol{\nabla}^{2}\boldsymbol{h}-\boldsymbol{R}^{-2}\boldsymbol{h}\right)+\beta\boldsymbol{v}=\frac{D}{Dt}\left[\frac{g}{f_{0}}\left(\boldsymbol{\nabla}^{2}\boldsymbol{h}-\boldsymbol{R}^{-2}\boldsymbol{h}\right)+f_{0}+\beta\boldsymbol{y}\right]=0$$

with material derivative $D/Dt = \partial/\partial t + \boldsymbol{u}\cdot\boldsymbol{\nabla}$

• " β -plane" approximation was used at $y' = y_0 + \Delta y$:

$$f(y') = f|_{y_0} + \frac{\partial f}{\partial y}|_{y_0} \Delta y + ... \approx f_0 + \beta \Delta y \equiv f_0 + \beta y$$

with $f_0 = f|_{y_0} = const$ and $\beta = \partial f / \partial y|_{y_0} = const$ it follows that $Df / Dt = D / Dt(f_0 + \beta y) = \boldsymbol{u} \cdot \boldsymbol{\nabla}(\beta y) = \beta v$

quasi-geostrophic PV is approximation to full PV for single layer

$$\frac{D}{Dt}\left(\frac{\zeta+f}{h}\right) = 0$$

 full potential vorticity (PV) equation can be derived from full equations for single layer (see exercises)

$$\frac{Dq}{Dt} = 0 \quad , \quad q = \frac{\zeta + f}{h}$$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \quad , \quad q = \frac{g}{f_0} \left(\boldsymbol{\nabla}^2 h - R^{-2} h \right) + f$$

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \ , \ q = \frac{g}{f_0} \left(\nabla^2 h - R^{-2} h \right) + f = \zeta - \frac{f_0}{H} h + f$$

with $\zeta \approx (g/f_0) \nabla^2 h$ and $f = f_0 + \beta y$ and $R^2 = g H/f_0^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \quad , \quad q = \frac{g}{f_0} \left(\nabla^2 h - R^{-2} h \right) + f = \zeta - \frac{f_0}{H} h + f$$

with $\zeta \approx (g/f_0) \nabla^2 h$ and $f = f_0 + \beta y$ and $R^2 = gH/f_0^2$

approximate full q

$$\frac{\zeta + f}{h} = \frac{\zeta}{H + \eta} + \frac{f_0}{H + \eta} + \frac{\beta y}{H + \eta}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \ , \ q = \frac{g}{f_0} \left(\nabla^2 h - R^{-2} h \right) + f = \zeta - \frac{f_0}{H} h + f$$

with $\zeta \approx (g/f_0) {m
abla}^2 h$ and $f = f_0 + eta y$ and $R^2 = g H/f_0^2$

▶ approximate full q using $|\zeta| \ll |f|$ and $|\beta y| \ll |f_0|$ and $|\eta| \ll |H|$

$$\frac{\zeta + f}{h} = \frac{\zeta}{H + \eta} + \frac{f_0}{H + \eta} + \frac{\beta y}{H + \eta}$$
$$= \frac{\zeta}{H} + O(Ro) + \frac{f_0/H}{1 + \eta/H} + \frac{\beta y}{H} + O(Ro)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \ , \ q = \frac{g}{f_0} \left(\nabla^2 h - R^{-2} h \right) + f = \zeta - \frac{f_0}{H} h + f$$

with $\zeta \approx (g/f_0) {m
abla}^2 h$ and $f = f_0 + eta y$ and $R^2 = g H/f_0^2$

▶ approximate full q using $|\zeta| \ll |f|$ and $|\beta y| \ll |f_0|$ and $|\eta| \ll |H|$

$$\frac{\zeta + f}{h} = \frac{\zeta}{H + \eta} + \frac{f_0}{H + \eta} + \frac{\beta y}{H + \eta}$$
$$= \frac{\zeta}{H} + O(Ro) + \frac{f_0/H}{1 + \eta/H} + \frac{\beta y}{H} + O(Ro)$$
$$= \frac{\zeta}{H} + \frac{f_0}{H} \left(1 - \frac{\eta}{H}\right) + \frac{\beta y}{H} + O(Ro)$$

with
$$1/(1+x) \approx 1-x$$
 for small $x = \eta/H$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \ , \ q = \frac{g}{f_0} \left(\nabla^2 h - R^{-2} h \right) + f = \zeta - \frac{f_0}{H} h + f$$

with $\zeta \approx (g/f_0) {m
abla}^2 h$ and $f = f_0 + eta y$ and $R^2 = g H/f_0^2$

▶ approximate full q using $|\zeta| \ll |f|$ and $|\beta y| \ll |f_0|$ and $|\eta| \ll |H|$

$$\frac{\zeta + f}{h} = \frac{\zeta}{H + \eta} + \frac{f_0}{H + \eta} + \frac{\beta y}{H + \eta}$$
$$= \frac{\zeta}{H} + O(Ro) + \frac{f_0/H}{1 + \eta/H} + \frac{\beta y}{H} + O(Ro)$$
$$= \frac{\zeta}{H} + \frac{f_0}{H} \left(1 - \frac{\eta}{H}\right) + \frac{\beta y}{H} + O(Ro)$$
$$= (\zeta + f_0 - (f_0/H)\eta + \beta y)/H + O(Ro)$$

with
$$1/(1+x) \approx 1-x$$
 for small $x = \eta/H$

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \ , \ q = \frac{g}{f_0} \left(\nabla^2 h - R^{-2} h \right) + f = \zeta - \frac{f_0}{H} h + f$$

with $\zeta \approx (g/f_0) {m
abla}^2 h$ and $f = f_0 + eta y$ and $R^2 = g H/f_0^2$

▶ approximate full q using $|\zeta| \ll |f|$ and $|\beta y| \ll |f_0|$ and $|\eta| \ll |H|$

$$\begin{aligned} \frac{\zeta + f}{h} &= \frac{\zeta}{H + \eta} + \frac{f_0}{H + \eta} + \frac{\beta y}{H + \eta} \\ &= \frac{\zeta}{H} + O(Ro) + \frac{f_0/H}{1 + \eta/H} + \frac{\beta y}{H} + O(Ro) \\ &= \frac{\zeta}{H} + \frac{f_0}{H} \left(1 - \frac{\eta}{H}\right) + \frac{\beta y}{H} + O(Ro) \\ &= (\zeta + f_0 - (f_0/H)\eta + \beta y)/H + O(Ro) \\ &= (\zeta - (f_0/H)h + f)/H + f_0/H + O(Ro) \end{aligned}$$
with $1/(1 + x) \approx 1 - x$ for small $x = \eta/H$

34/41

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

potential vorticity equation for a single layer

$$\frac{Dq}{Dt} = 0$$
, $q = \frac{\zeta + f}{h}$ or $q = \zeta - \frac{f_0}{H}h + f$

q is conserved for fluid parcels in single layer

potential vorticity equation for a single layer

$$rac{Dq}{Dt}=0$$
 , $q=rac{\zeta+f}{h}$ or $q=\zeta-rac{f_0}{H}h+f$

q is conserved for fluid parcels in single layer

h = const, ζ initially zero, parcel moves northward
 f increases but q = (f + ζ)/h has to stay constant
 → ζ = ∂v/∂x - ∂u/∂y decreases → anticyclonic rotation

u = -ay, $v = 0 \rightarrow \zeta = a > 0$: cyclonic (anticlockwise) rotation u = +ay, $v = 0 \rightarrow \zeta = a < 0$: anticyclonic (clockwise) rotation potential vorticity equation for a single layer

$$rac{Dq}{Dt}=0$$
 , $q=rac{\zeta+f}{h}$ or $q=\zeta-rac{f_0}{H}h+f$

q is conserved for fluid parcels in single layer

- h = const, ζ initially zero, parcel moves northward f increases but $q = (f + \zeta)/h$ has to stay constant $\rightarrow \zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$ decreases \rightarrow anticyclonic rotation
- h = const, ζ initially zero, parcel moves southward $\rightarrow \zeta = \partial v / \partial x - \partial u / \partial y$ increases \rightarrow more cyclonic rotation

u = -ay, $v = 0 \rightarrow \zeta = a > 0$: cyclonic (anticlockwise) rotation u = +ay, $v = 0 \rightarrow \zeta = a < 0$: anticyclonic (clockwise) rotation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

potential vorticity equation for a single layer

$$rac{Dq}{Dt} = 0$$
 , $q = rac{\zeta + f}{h}$ or $q = \zeta - rac{f_0}{H}h + f$

q is conserved for fluid parcels in single layer

f = const, ζ initially zero, parcel moves to deeper water
 → ζ = ∂v/∂x − ∂u/∂y increases → cyclonic rotation

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \quad , \quad q = \frac{g}{f} \left(\boldsymbol{\nabla}^2 h - R^{-2} h \right) + f_0 + \beta y$$

q is (approximately) conserved in single layer for $\mathit{Ro} \ll 1$

- $\zeta = (g/f) \nabla^2 h$ is relative vorticity
- $-(g/f)R^{-2}h$ is stretching vorticity
- $f = f_0 + \beta y$ is planetary vorticity
- h is streamfunction for the quasi-geostrophic flow

quasi-geostrophic potential vorticity equation

$$\frac{Dq}{Dt} = 0 \quad , \quad q = \frac{g}{f} \left(\boldsymbol{\nabla}^2 h - R^{-2} h \right) + f_0 + \beta y$$

q is (approximately) conserved in single layer for $Ro \ll 1$ • $\psi = gh/f_0$ is streamfunction for the quasi-geostrophic flow

$$u \approx -\frac{g}{f_0}\frac{\partial h}{\partial y} = -\frac{\partial \psi}{\partial y} , \quad v \approx \frac{g}{f_0}\frac{\partial h}{\partial x} = \frac{\partial \psi}{\partial x}$$

$$\begin{array}{ccc} & \mathbf{H} \\ & \mathbf{H} \\ & \mathbf{H} \end{array} & \mathbf{u} & = & \begin{pmatrix} -\partial\psi/\partial y \\ \partial\psi/\partial x \end{pmatrix} \\ & = & \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} \partial\psi/\partial x \\ \partial\psi/\partial y \\ 0 \end{pmatrix} = \mathbf{k} \times \nabla\psi \end{array}$$

• **u** (blue arrow): anti-clockwise rotation of $\nabla \psi$ (red arrow) by 90°

・ロト・日本・モート モー うへぐ

Recapitulation

Layered models Gravity waves without rotation Gravity waves with rotation

Waves

Kelvin waves Quasi-geostrophic approximation Potential vorticity Geostrophic adjustment

• consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

(ロ)、

• consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ (linearized, $D/Dt \rightarrow \partial/\partial t$) potential vorticity equation

$$\frac{\partial q}{\partial t} = 0$$
, $q = \frac{\zeta + f}{h} \approx (\zeta - \frac{f}{H}h + f)/H$

• f in q for f = const does not matter $\rightarrow q = \zeta - (f/H)h$

consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ (linearized, $D/Dt \rightarrow \partial/\partial t$) potential vorticity equation

$$\frac{\partial q}{\partial t} = 0$$
, $q = \frac{\zeta + f}{h} \approx (\zeta - \frac{f}{H}h + f)/H$

• *f* in *q* for f = const does not matter $\rightarrow q = \zeta - (f/H)h$

• consider as initial condition $\boldsymbol{u} = 0$ and h a step function such that

$$h|_{t=0} = \begin{cases} h_0, & \text{if } x < 0\\ -h_0, & \text{if } x > 0 \end{cases} \to q_0 = q|_{t=0} = \begin{cases} -fh_0/H, & \text{if } x < 0\\ fh_0/H, & \text{if } x > 0 \end{cases}$$

consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ (linearized, $D/Dt \rightarrow \partial/\partial t$) potential vorticity equation

$$\frac{\partial q}{\partial t} = 0$$
, $q = \frac{\zeta + f}{h} \approx (\zeta - \frac{f}{H}h + f)/H$

• *f* in *q* for f = const does not matter $\rightarrow q = \zeta - (f/H)h$

• consider as initial condition u = 0 and h a step function such that

$$h|_{t=0} = \begin{cases} h_0, & \text{if } x < 0\\ -h_0, & \text{if } x > 0 \end{cases} \to q_0 = q|_{t=0} = \begin{cases} -fh_0/H, & \text{if } x < 0\\ fh_0/H, & \text{if } x > 0 \end{cases}$$

▶ using $q(t) = q_0$ steady state solution $(t \to \infty)$ is given by

$$\begin{aligned} fv_{\infty} &= g \frac{\partial h_{\infty}}{\partial x} , \quad fu_{\infty} &= -g \frac{\partial h_{\infty}}{\partial y} \\ \\ &\to q_{\infty} &= \frac{g}{f} \frac{\partial^2 h_{\infty}}{\partial x^2} + \frac{g}{f} \frac{\partial^2 h_{\infty}}{\partial y^2} - \frac{f}{H} h_{\infty} = q_0 \\ \\ &\to \nabla^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 \text{ with Rossby radius } R = \sqrt{gH} / |f| \end{aligned}$$

• steady state solution $(t
ightarrow \infty)$ is given by

$$abla^2 h_\infty - R^{-2} h_\infty = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \blacktriangleright steady state solution $(t
ightarrow \infty)$ is given by

$$\boldsymbol{\nabla}^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

• solution of h_{∞} is given by

$$h(x)_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0\\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

 \blacktriangleright steady state solution $(t
ightarrow \infty)$ is given by

$$\boldsymbol{\nabla}^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

• solution of h_{∞} is given by

$$h(x)_{\infty} = egin{cases} h_0(1-e^{x/R}), & ext{if } x < 0 \ -h_0(1-e^{-x/R}), & ext{if } x > 0 \end{cases}$$

▶ since for x < 0 $h'_{\infty} = -h_0/R e^{x/R}$ and $h''_{\infty} = -h_0/R^2 e^{x/R}$ and

$$h_{\infty}^{\prime\prime} - R^{-2}h_{\infty} = -h_0R^{-2}e^{x/R} - R^{-2}h_0(1 - e^{x/R}) = -R^{-2}h_0$$

40/41

• steady state solution $(t o \infty)$ is given by

$$abla^2 h_\infty - R^{-2} h_\infty = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

• solution of h_{∞} is given by

$$h(x)_{\infty} = egin{cases} h_0(1-e^{x/R}), & ext{if } x < 0 \ -h_0(1-e^{-x/R}), & ext{if } x > 0 \end{cases}$$

since for x < 0 h'_∞ = -h₀/R e^{x/R} and h''_∞ = -h₀/R² e^{x/R} and h''_∞ = -h₀R⁻²h_∞ = -h₀R⁻²e^{x/R} - R⁻²h₀(1 - e^{x/R}) = -R⁻²h₀
 since for x > 0 h'_∞ = -h₀/R e^{-x/R} and h''_∞ = h₀/R² e^{-x/R} and h''_∞ = h₀/R² e^{-x/R} and h''_∞ = -R⁻²h₀

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

initial and steady state solution of h are given by

$$h|_{t=0} = \begin{cases} h_0, & \text{if } x < 0 \\ -h_0, & \text{if } x > 0 \end{cases}, \quad h|_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

initial and steady state solution of h are given by

$$h|_{t=0} = \begin{cases} h_0, & \text{if } x < 0 \\ -h_0, & \text{if } x > 0 \end{cases}, \quad h|_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

▶ velocities from $fv_{\infty} = g\partial h_{\infty}/\partial x$ and $fu_{\infty} = -g\partial h_{\infty}/\partial y$

$$u_{\infty} = 0$$
 , $v_{\infty} = (g/f) \begin{cases} -h_0/Re^{x/R}, & \text{if } x < 0 \\ -h_0/Re^{-x/R}, & \text{if } x > 0 \end{cases} = -\frac{gh_0}{fR}e^{-|x|/R}$

