Dynamische und regionale Ozeanographie WS 2015/16

Carsten Eden und Detlef Quadfasel

Institut für Meereskunde, Universität Hamburg

December 1, 2015

11 - Waves and Instabilities

Waves

Layered models

Gravity waves without rotation

One-dimensional wave

Plane wave

Two waves

Gravity waves with rotation

Kelvin waves

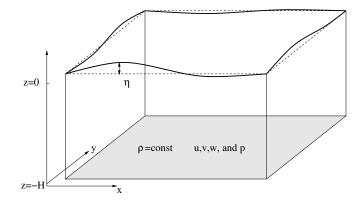
Geostrophic adjustment

Waves

Layered models

Gravity waves without rotation
One-dimensional wave
Plane wave
Two waves
Gravity waves with rotation
Kelvin waves

- consider a single layer system in hydrostatic approximation
- assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$



• with sea level at $z = \eta$ and the bottom at z = -H

consider a single layer system in hydrostatic approximation

$$\frac{\partial u}{\partial t} + \mathbf{u} \cdot \nabla u - fv = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$\frac{\partial v}{\partial t} + \mathbf{u} \cdot \nabla v + fu = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

▶ assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$

consider a single layer system in hydrostatic approximation

$$\frac{\partial u}{\partial t} + \mathbf{u} \cdot \nabla u - fv = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$\frac{\partial v}{\partial t} + \mathbf{u} \cdot \nabla v + fu = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

- ▶ assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$
- now vertically integrate continuity equation from bottom to top

$$\int_{-H}^{\eta} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dz + \int_{-H}^{\eta} \frac{\partial w}{\partial z} dz = 0$$

with sea level at $z = \eta$ and the bottom at z = -H

consider a single layer system in hydrostatic approximation

$$\frac{\partial u}{\partial t} + \mathbf{u} \cdot \nabla u - fv = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$\frac{\partial v}{\partial t} + \mathbf{u} \cdot \nabla v + fu = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

- lacktriangle assume ho=const and no vertical shear $\partial u/\partial z=\partial v/\partial z=0$
- now vertically integrate continuity equation from bottom to top

$$\int_{-H}^{\eta} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dz + \int_{-H}^{\eta} \frac{\partial w}{\partial z} dz = 0$$
$$(H + \eta) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + w|_{\eta} - w|_{-H} = 0$$

with sea level at $z=\eta$ and the bottom at z=-H

- ▶ assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$
- vertically integrate continuity equation from bottom to top

$$(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+w|_{\eta}-w|_{-H}=0$$

- assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$
- vertically integrate continuity equation from bottom to top

$$(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+w|_{\eta}-w|_{-H}=0$$

$$w_{-H} = 0$$
 , $w|_{\eta} = \frac{\partial \eta}{\partial t} + u|_{\eta} \frac{\partial \eta}{\partial x} + v|_{\eta} \frac{\partial \eta}{\partial y}$

which means no mass flux through upper and lower boundaries

- ▶ assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$
- vertically integrate continuity equation from bottom to top

$$(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+w|_{\eta}-w|_{-H}=0$$

$$w_{-H} = 0$$
 , $w|_{\eta} = \frac{\partial \eta}{\partial t} + u|_{\eta} \frac{\partial \eta}{\partial x} + v|_{\eta} \frac{\partial \eta}{\partial y}$

which means no mass flux through upper and lower boundaries

this yields

$$(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{\partial \eta}{\partial t}+u\frac{\partial \eta}{\partial x}+v\frac{\partial \eta}{\partial y}=0$$

- ▶ assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$
- vertically integrate continuity equation from bottom to top

$$(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+w|_{\eta}-w|_{-H}=0$$

$$w_{-H} = 0$$
 , $w|_{\eta} = \frac{\partial \eta}{\partial t} + u|_{\eta} \frac{\partial \eta}{\partial x} + v|_{\eta} \frac{\partial \eta}{\partial y}$

which means no mass flux through upper and lower boundaries

this yields

$$(H+\eta)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \frac{\partial \eta}{\partial t} + u\frac{\partial \eta}{\partial x} + v\frac{\partial \eta}{\partial y} = 0$$
$$h\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \frac{\partial h}{\partial t} + u\frac{\partial h}{\partial x} + v\frac{\partial h}{\partial y} = 0$$

which becomes a layer thickness equation for $h = H + \eta$

- ▶ assume $\rho = const$ and no vertical shear $\partial u/\partial z = \partial v/\partial z = 0$
- vertically integrate continuity equation from bottom to top

$$(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+w|_{\eta}-w|_{-H}=0$$

$$w_{-H} = 0$$
 , $w|_{\eta} = \frac{\partial \eta}{\partial t} + u|_{\eta} \frac{\partial \eta}{\partial x} + v|_{\eta} \frac{\partial \eta}{\partial y}$

which means no mass flux through upper and lower boundaries

this yields

$$(H+\eta)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \frac{\partial \eta}{\partial t} + u\frac{\partial \eta}{\partial x} + v\frac{\partial \eta}{\partial y} = 0$$

$$h\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \frac{\partial h}{\partial t} + u\frac{\partial h}{\partial x} + v\frac{\partial h}{\partial y} = 0$$

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(uh) + \frac{\partial}{\partial y}(vh) = 0$$

which becomes a layer thickness equation for $h = H + \eta$

lacktriangle assume ho=const and integrate hydrostatic balance from z to top

$$\frac{\partial p}{\partial z} = -g\rho$$

ightharpoonup assume ho=const and integrate hydrostatic balance from z to top

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\int_{z}^{\eta} \frac{\partial p}{\partial z} dz = p|_{\eta} - p|_{z} = -g\rho \int_{z}^{\eta} dz = -g\rho(\eta - z)$$

ightharpoonup assume ho=const and integrate hydrostatic balance from z to top

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\int_{z}^{\eta} \frac{\partial p}{\partial z} dz = p|_{\eta} - p|_{z} = -g\rho \int_{z}^{\eta} dz = -g\rho(\eta - z)$$

$$p = p|_{\eta} - g\rho(z - \eta)$$

ightharpoonup assume ho = const and integrate hydrostatic balance from z to top

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\int_{z}^{\eta} \frac{\partial p}{\partial z} dz = p|_{\eta} - p|_{z} = -g\rho \int_{z}^{\eta} dz = -g\rho(\eta - z)$$

$$p = p|_{\eta} - g\rho(z - \eta)$$

$$\nabla p = g\rho \nabla \eta = g\rho \nabla h$$

with layer thickness $h = \eta + H$

ightharpoonup assume ho=const and integrate hydrostatic balance from z to top

$$\frac{\partial p}{\partial z} = -g\rho$$

$$\int_{z}^{\eta} \frac{\partial p}{\partial z} dz = p|_{\eta} - p|_{z} = -g\rho \int_{z}^{\eta} dz = -g\rho(\eta - z)$$

$$p = p|_{\eta} - g\rho(z - \eta)$$

$$\nabla p = g\rho \nabla \eta = g\rho \nabla h$$

with layer thickness $h = \eta + H$

momentum equation becomes

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f v = -\frac{1}{\rho} \frac{\partial p}{\partial x} = -g \frac{\partial h}{\partial x}$$
$$\frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f u = -\frac{1}{\rho} \frac{\partial p}{\partial y} = -g \frac{\partial h}{\partial y}$$

since h(x, y, t) and $\partial u/\partial z = \partial v/\partial z = 0$ equations are now 2-D

single layer system in hydrostatic approximation

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f v = -g \frac{\partial h}{\partial x}$$
$$\frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f u = -g \frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) + \frac{\partial}{\partial y} (vh) = 0$$

single layer system in hydrostatic approximation

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f v = -g \frac{\partial h}{\partial x}$$
$$\frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f u = -g \frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) + \frac{\partial}{\partial y} (vh) = 0$$

▶ neglecting momentum advection for simplicity and assuming $H \gg \eta$ in $h = H + \eta \rightarrow \nabla \cdot (\boldsymbol{u}h) \approx H \nabla \cdot \boldsymbol{u}$

single layer system in hydrostatic approximation

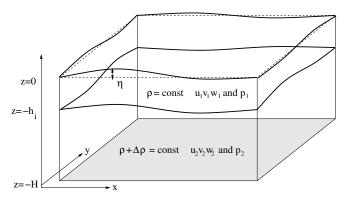
$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} u - f v = -g \frac{\partial h}{\partial x}$$
$$\frac{\partial v}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} v + f u = -g \frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) + \frac{\partial}{\partial y} (vh) = 0$$

▶ neglecting momentum advection for simplicity and assuming $H \gg \eta$ in $h = H + \eta \rightarrow \nabla \cdot (\boldsymbol{u}h) \approx H \nabla \cdot \boldsymbol{u}$

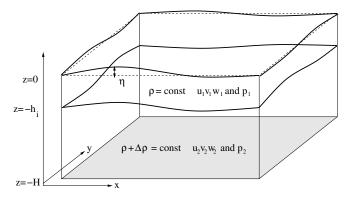
$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x}$$
$$\frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

simple system which contains almost all relevant dynamics

- two layers with $\rho_1 = \rho = const$ and $\rho_2 = \rho + \Delta \rho = const$
- sea surface at $z = \eta$ and layer interface $z = -h_i$
- lacktriangle assume again no vertical shear $\partial u_{1,2}/\partial z=\partial v_{1,2}/\partial z=0$ in layers

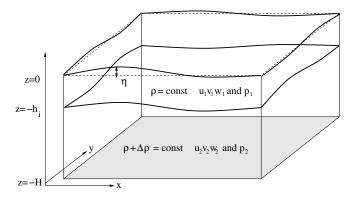


- two layers with $\rho_1 = \rho = const$ and $\rho_2 = \rho + \Delta \rho = const$
- sea surface at $z = \eta$ and layer interface $z = -h_i$
- ▶ assume again no vertical shear $\partial u_{1,2}/\partial z = \partial v_{1,2}/\partial z = 0$ in layers



• pressure gradient in upper layer $g \rho \nabla \eta$

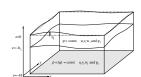
- two layers with $\rho_1 = \rho = const$ and $\rho_2 = \rho + \Delta \rho = const$
- lacktriangle sea surface at $z=\eta$ and layer interface $z=-h_i$
- lacktriangle assume again no vertical shear $\partial u_{1,2}/\partial z=\partial v_{1,2}/\partial z=0$ in layers



- pressure gradient in upper layer $g \rho \nabla \eta$
- ▶ pressure gradient in lower layer $-g(\rho + \Delta \rho)\nabla h_i + g\rho\nabla(\eta + h_i)$

upper layer equations

$$\frac{\partial u_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} u_1 - f v_1 = -g \frac{\partial \eta}{\partial x}
\frac{\partial v_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} v_1 + f u_1 = -g \frac{\partial \eta}{\partial y}
\frac{\partial}{\partial t} (\eta + h_i) + \frac{\partial}{\partial x} u_1 (\eta + h_i) + \frac{\partial}{\partial y} v_1 (\eta + h_i) = 0$$



upper layer equations

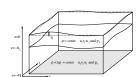
$$\frac{\partial u_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} u_1 - f v_1 = -g \frac{\partial \eta}{\partial x}$$

$$\frac{\partial v_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} v_1 + f u_1 = -g \frac{\partial \eta}{\partial y}$$

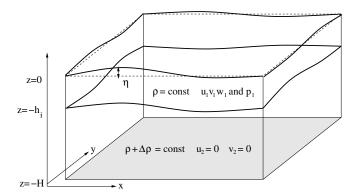
$$\frac{\partial}{\partial t} (\eta + h_i) + \frac{\partial}{\partial x} u_1 (\eta + h_i) + \frac{\partial}{\partial y} v_1 (\eta + h_i) = 0$$

lower layer equations

$$\frac{\partial u_2}{\partial t} + \boldsymbol{u}_2 \cdot \boldsymbol{\nabla} u_2 - f v_2 = g \frac{\Delta \rho}{\rho} \frac{\partial h_i}{\partial x} - g \frac{\partial \eta}{\partial x}
\frac{\partial v_2}{\partial t} + \boldsymbol{u}_2 \cdot \boldsymbol{\nabla} v_2 + f u_2 = g \frac{\Delta \rho}{\rho} \frac{\partial h_i}{\partial y} - g \frac{\partial \eta}{\partial y}
\frac{\partial}{\partial t} (H - h_i) + \frac{\partial}{\partial x} u_2 (H - h_i) + \frac{\partial}{\partial y} v_2 (H - h_i) = 0$$

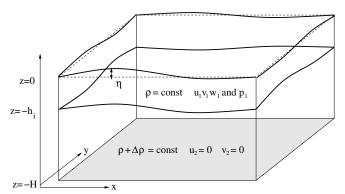


$$0 = g \frac{\Delta \rho}{\rho} \nabla h_i - g \nabla \eta$$



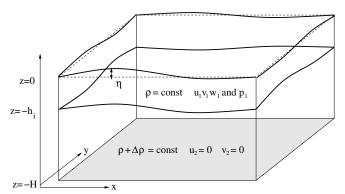
$$0 = g \frac{\Delta \rho}{\rho} \nabla h_i - g \nabla \eta \quad \rightarrow \quad \frac{\Delta \rho}{\rho} h_i - \eta = const = 0$$

vanishing pressure variations in lower layer



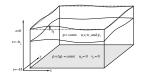
$$0 = g \frac{\Delta \rho}{\rho} \nabla h_i - g \nabla \eta \quad \rightarrow \quad \frac{\Delta \rho}{\rho} h_i - \eta = const = 0 \quad \rightarrow \quad \eta = \frac{\Delta \rho}{\rho} h_i$$

vanishing pressure variations in lower layer



$$0 = g \frac{\Delta \rho}{\rho} \nabla h_i - g \nabla \eta \quad \rightarrow \quad \eta = \frac{\Delta \rho}{\rho} h_i$$

vanishing pressure variations in lower layer

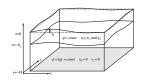


$$0 = g \frac{\Delta \rho}{\rho} \nabla h_i - g \nabla \eta \quad \rightarrow \quad \eta = \frac{\Delta \rho}{\rho} h_i$$

vanishing pressure variations in lower layer

upper layer equations become

$$\frac{\partial u_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} u_1 - f v_1 = -g \frac{\partial \eta}{\partial x}
\frac{\partial v_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} v_1 + f u_1 = -g \frac{\partial \eta}{\partial y}
\frac{\partial}{\partial t} (\eta + h_i) + \frac{\partial}{\partial x} u_1 (\eta + h_i) + \frac{\partial}{\partial y} v_1 (\eta + h_i) = 0$$



$$0 = g \frac{\Delta \rho}{\rho} \nabla h_i - g \nabla \eta \quad \rightarrow \quad \eta = \frac{\Delta \rho}{\rho} h_i$$

vanishing pressure variations in lower layer

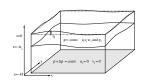
upper layer equations become

$$\frac{\partial u_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} u_1 - f v_1 = -g' \frac{\partial h_i}{\partial x}$$

$$\frac{\partial v_1}{\partial t} + \boldsymbol{u}_1 \cdot \boldsymbol{\nabla} v_1 + f u_1 = -g' \frac{\partial h_i}{\partial y}$$

$$\frac{\partial}{\partial t} h_i + \frac{\partial}{\partial x} (u_1 h_i) + \frac{\partial}{\partial y} (v_1 h_i) = 0$$

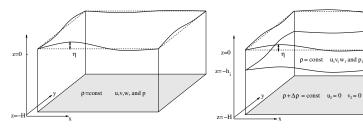
with "reduced gravity" $g'=g\Delta
ho/
ho$



"barotropic model" and "baroclinic model"

$$\frac{\partial u}{\partial t} + \mathbf{u} \cdot \nabla u - f v = -g \frac{\partial h}{\partial x} , \quad \frac{\partial v}{\partial t} + \mathbf{u} \cdot \nabla v + f u = -g \frac{\partial h}{\partial y}$$
$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) + \frac{\partial}{\partial y} (vh) = 0$$

- \blacktriangleright h is total thickness ("barotropic") or layer interface h_i ("baroclinic")
- lacktriangle either $g=9.81\,\mathrm{m/s^2}$ ("barotropic") or $g o g\Delta
 ho/
 ho_0$ ("baroclinic")



Waves

Layered models

Gravity waves without rotation One-dimensional wave

Plane wave --

Cravity waves with retat

Kelvin waves

Geostrophic adjustment

▶ consider the (linearized) layered model with f = 0 and also set y dependency to zero $\rightarrow v = 0$

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} , \frac{\partial y}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} , \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} \right) = 0$$

▶ consider the (linearized) layered model with f = 0 and also set y dependency to zero $\rightarrow v = 0$

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \ , \ \frac{\partial y}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \ , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial t} = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial x} , \quad \frac{\partial}{\partial t}\frac{\partial h}{\partial t} + H\frac{\partial}{\partial t}\frac{\partial u}{\partial x} = 0 \quad \rightarrow \quad \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

▶ consider the (linearized) layered model with f = 0 and also set y dependency to zero $\rightarrow v = 0$

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \ , \ \frac{\partial y}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \ , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial t} = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial x} , \quad \frac{\partial}{\partial t}\frac{\partial h}{\partial t} + H\frac{\partial}{\partial t}\frac{\partial u}{\partial x} = 0 \quad \rightarrow \quad \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

▶ try particular solution $h(x, t) = \sin k(x - ct)$

$$\frac{\partial h}{\partial t} = -kc \cos k(x - ct)$$
 , $\frac{\partial^2 h}{\partial t^2} = -(kc)^2 \sin k(x - ct)$

▶ consider the (linearized) layered model with f = 0 and also set y dependency to zero $\rightarrow v = 0$

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \ , \ \frac{\partial y}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \ , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial t} = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial x} , \quad \frac{\partial}{\partial t}\frac{\partial h}{\partial t} + H\frac{\partial}{\partial t}\frac{\partial u}{\partial x} = 0 \quad \rightarrow \quad \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

▶ try particular solution $h(x, t) = \sin k(x - ct)$

$$\frac{\partial h}{\partial t} = -kc \cos k(x - ct) , \frac{\partial^2 h}{\partial t^2} = -(kc)^2 \sin k(x - ct)$$

$$\frac{\partial h}{\partial x} = k \cos k(x - ct) , \frac{\partial^2 h}{\partial x^2} = -k^2 \sin k(x - ct)$$

▶ consider the (linearized) layered model with f = 0 and also set y dependency to zero $\rightarrow v = 0$

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \ , \ \frac{\partial y}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \ , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial t} = -g\frac{\partial}{\partial x}\frac{\partial h}{\partial x} , \quad \frac{\partial}{\partial t}\frac{\partial h}{\partial t} + H\frac{\partial}{\partial t}\frac{\partial u}{\partial x} = 0 \quad \rightarrow \quad \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

▶ try particular solution $h(x, t) = \sin k(x - ct)$

$$\frac{\partial h}{\partial t} = -kc \cos k(x - ct) , \frac{\partial^2 h}{\partial t^2} = -(kc)^2 \sin k(x - ct)$$

$$\frac{\partial h}{\partial x} = k \cos k(x - ct) , \frac{\partial^2 h}{\partial x^2} = -k^2 \sin k(x - ct)$$

this works as long as

$$-(kc)^2\sin(...) + k^2gH\sin(...) = 0 \rightarrow c^2 = gH \rightarrow c = \pm\sqrt{gH}$$

which is the dispersion relation for a gravity wave (for $f = 0$)

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

▶ a particular solution is $h(x, t) = \sin k(x - ct)$

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

- ▶ a particular solution is $h(x, t) = \sin k(x ct)$
- ▶ $h = A \sin k(x ct)$ with constant amplitude A is also solution and also $h = A \sin(k(x ct) + \phi)$ with constant phase ϕ

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

- ▶ a particular solution is $h(x, t) = \sin k(x ct)$
- ▶ $h = A \sin k(x ct)$ with constant amplitude A is also solution and also $h = A \sin(k(x ct) + \phi)$ with constant phase ϕ
- more general wave solution is

$$h = A\sin k(x - ct) + B\cos k(x - ct)$$

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

- ▶ a particular solution is $h(x, t) = \sin k(x ct)$
- ▶ $h = A \sin k(x ct)$ with constant amplitude A is also solution and also $h = A \sin(k(x ct) + \phi)$ with constant phase ϕ
- more general wave solution is

$$h = A\sin k(x - ct) + B\cos k(x - ct)$$

or write more compact as

$$h = \operatorname{Re}\left\{Ae^{ik(x-ct)}\right\}$$

with complex constant A with $Re\{A\} = A_r$ and $Im\{A\} = A_i$

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

- ▶ a particular solution is $h(x, t) = \sin k(x ct)$
- ▶ $h = A \sin k(x ct)$ with constant amplitude A is also solution and also $h = A \sin(k(x ct) + \phi)$ with constant phase ϕ
- more general wave solution is

$$h = A\sin k(x - ct) + B\cos k(x - ct)$$

or write more compact as

$$h = \operatorname{Re}\left\{Ae^{ik(x-ct)}\right\} = \operatorname{Re}\left\{\left(A_r + iA_i\right)\left(\cos k(x-ct) + i\sin k(x-ct)\right)\right\}$$

with complex constant A with $Re\{A\} = A_r$ and $Im\{A\} = A_i$ with Euler relation $e^{i\phi} = \cos \phi + i \sin \phi$

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

- ▶ a particular solution is $h(x, t) = \sin k(x ct)$
- ▶ $h = A \sin k(x ct)$ with constant amplitude A is also solution and also $h = A \sin(k(x ct) + \phi)$ with constant phase ϕ
- more general wave solution is

$$h = A\sin k(x - ct) + B\cos k(x - ct)$$

or write more compact as

$$h = \operatorname{Re} \left\{ A e^{ik(x-ct)} \right\} = \operatorname{Re} \left\{ (A_r + iA_i) \left(\cos k(x-ct) + i \sin k(x-ct) \right) \right\}$$
$$= \operatorname{Re} \left\{ A_r \cos k(x-ct) + iA_r \sin k(x-ct) \right\}$$
$$+ \operatorname{Re} \left\{ iA_i \cos k(x-ct) - A_i \sin k(x-ct) \right\}$$

with complex constant A with $Re\{A\} = A_r$ and $Im\{A\} = A_i$ with Euler relation $e^{i\phi} = \cos \phi + i \sin \phi$

ightharpoonup gravity wave equation (for f = 0)

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

- ▶ a particular solution is $h(x, t) = \sin k(x ct)$
- ▶ $h = A \sin k(x ct)$ with constant amplitude A is also solution and also $h = A \sin(k(x ct) + \phi)$ with constant phase ϕ
- more general wave solution is

$$h = A\sin k(x - ct) + B\cos k(x - ct)$$

or write more compact as

$$h = \operatorname{Re} \left\{ A e^{ik(x-ct)} \right\} = \operatorname{Re} \left\{ (A_r + iA_i) \left(\cos k(x-ct) + i \sin k(x-ct) \right) \right\}$$

$$= \operatorname{Re} \left\{ A_r \cos k(x-ct) + iA_r \sin k(x-ct) \right\}$$

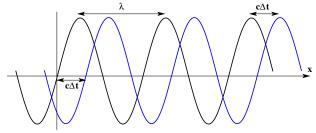
$$+ \operatorname{Re} \left\{ iA_i \cos k(x-ct) - A_i \sin k(x-ct) \right\}$$

$$= A_r \cos k(x-ct) - A_i \sin k(x-ct)$$

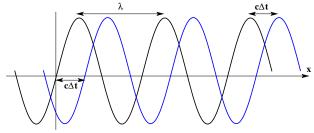
with complex constant A with $Re\{A\} = A_r$ and $Im\{A\} = A_i$ with Euler relation $e^{i\phi} = \cos \phi + i \sin \phi$

- ▶ gravity wave equation (for f = 0) $\partial^2 h/\partial t^2 gH\partial^2 h/\partial x^2 = 0$
- wave solution is given by $h=Ae^{ik(x-ct)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c=\pm\sqrt{gH}$

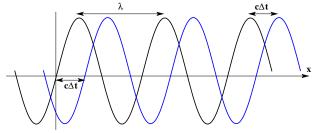
- gravity wave equation (for f=0) $\partial^2 h/\partial t^2 gH\partial^2 h/\partial x^2 = 0$
- wave solution is given by $h=Ae^{ik(x-ct)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c=\pm\sqrt{gH}$
- ▶ consider $h = \sin k(x ct)$ at $t = 0 \rightarrow h = \sin kx$ (black line) \rightarrow wavelength is $\lambda = 2\pi/k$, k is wavenumber



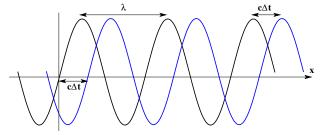
- gravity wave equation (for f=0) $\partial^2 h/\partial t^2 gH\partial^2 h/\partial x^2 = 0$
- wave solution is given by $h=Ae^{ik(x-ct)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c=\pm\sqrt{gH}$
- ▶ consider $h = \sin k(x ct)$ at $t = 0 \rightarrow h = \sin kx$ (black line) \rightarrow wavelength is $\lambda = 2\pi/k$, k is wavenumber
- consider h at t=0 (black line) and at later time $t=\Delta t$ (blue line) phase where h=0 was at t=0 at x=0 but at $t=\Delta t$ at $x=c\Delta t$



- gravity wave equation (for f=0) $\partial^2 h/\partial t^2 gH\partial^2 h/\partial x^2 = 0$
- wave solution is given by $h=Ae^{ik(x-ct)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c=\pm\sqrt{gH}$
- ▶ consider $h = \sin k(x ct)$ at $t = 0 \rightarrow h = \sin kx$ (black line) \rightarrow wavelength is $\lambda = 2\pi/k$, k is wavenumber
- consider h at t=0 (black line) and at later time $t=\Delta t$ (blue line) phase where h=0 was at t=0 at x=0 but at $t=\Delta t$ at $x=c\Delta t$ t=0 at t=0 but at t=0 but at t=0 at t=0 but at t=0 but at t=0 but at t=0 but at t=0 at t=0 but at t=0 but



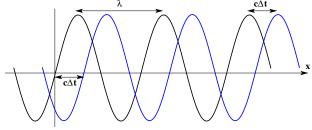
- gravity wave equation (for f=0) $\partial^2 h/\partial t^2 gH\partial^2 h/\partial x^2 = 0$
- wave solution is given by $h=Ae^{ik(x-ct)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c=\pm\sqrt{gH}$
- wavelength $\lambda = 2\pi/k$ with wavenumber k
- phase velocity c with dispersion relation $c=\pm\sqrt{gH}$



- gravity wave equation (for f = 0) $\partial^2 h/\partial t^2 gH\partial^2 h/\partial x^2 = 0$
- wave solution is given by $h=Ae^{ik(x-ct)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c=\pm\sqrt{gH}$
- wavelength $\lambda = 2\pi/k$ with wavenumber k
- phase velocity c with dispersion relation $c = \pm \sqrt{gH}$
- ▶ rewrite solution as $h = Ae^{i(kx-\omega t)}$ with frequency $\omega = ck$ and

$$\omega = \pm k \sqrt{gH}$$

 $m{ ilde{T}}=2\pi/\omega$ is the period in which a fixed phase pass a fixed point



Waves

Layered models

Gravity waves without rotation

One-dimensional wave

Plane wave

Two waves

Gravity waves with rotation

Kelvin waves

Geostrophic adjustment

▶ consider the (linearized) layered model with f = 0 but now include y dependency \rightarrow plane wave

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \ , \ \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \ , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

▶ consider the (linearized) layered model with f=0 but now include y dependency \rightarrow plane wave

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \; , \; \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \; , \; \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\frac{\partial \mathbf{u}}{\partial t} = - g \nabla h , \quad \frac{\partial h}{\partial t} + H \nabla \cdot \mathbf{u} = 0$$

▶ consider the (linearized) layered model with f=0 but now include y dependency \rightarrow plane wave

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \; , \; \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \; , \; \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\nabla \cdot \frac{\partial \mathbf{u}}{\partial t} = -\nabla \cdot g \nabla h \ , \ \frac{\partial}{\partial t} \frac{\partial h}{\partial t} + \frac{\partial}{\partial t} H \nabla \cdot \mathbf{u} = 0 \ \rightarrow \ \frac{\partial^2 h}{\partial t^2} - g H \nabla^2 h = 0$$

▶ consider the (linearized) layered model with f=0 but now include y dependency \rightarrow plane wave

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \; , \; \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \; , \; \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\nabla \cdot \frac{\partial \mathbf{u}}{\partial t} = -\nabla \cdot g \nabla h \ , \ \frac{\partial}{\partial t} \frac{\partial h}{\partial t} + \frac{\partial}{\partial t} H \nabla \cdot \mathbf{u} = 0 \ \to \ \frac{\partial^2 h}{\partial t^2} - g H \nabla^2 h = 0$$

• wave solution $h = A \exp i(k_1x + k_2y - \omega t) = A \exp i(\mathbf{k} \cdot \mathbf{x} - \omega t)$

$$\frac{\partial h}{\partial t} = -i\omega A \exp i(...) \quad , \quad \frac{\partial^2 h}{\partial t^2} = (i\omega)^2 A \exp i(...) = -\omega^2 A \exp i(...)$$

with wavenumber vector $\mathbf{k} = (k_1, k_2)$

lacktriangledown consider the (linearized) layered model with f=0 but now include y dependency o plane wave

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \; , \; \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \; , \; \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\nabla \cdot \frac{\partial \mathbf{u}}{\partial t} = -\nabla \cdot g \nabla h \; , \; \frac{\partial}{\partial t} \frac{\partial h}{\partial t} + \frac{\partial}{\partial t} H \nabla \cdot \mathbf{u} = 0 \; \to \; \frac{\partial^2 h}{\partial t^2} - g H \nabla^2 h = 0$$

• wave solution $h = A \exp i(k_1x + k_2y - \omega t) = A \exp i(\mathbf{k} \cdot \mathbf{x} - \omega t)$

$$\frac{\partial h}{\partial t} = -i\omega A \exp i(...) , \quad \frac{\partial^2 h}{\partial t^2} = (i\omega)^2 A \exp i(...) = -\omega^2 A \exp i(...)$$

$$\nabla h = i\mathbf{k} A \exp i(...) , \quad \nabla \cdot \nabla h = i^2\mathbf{k} \cdot \mathbf{k} A \exp i(...) = -k^2 A \exp i(...)$$
with wavenumber vector $\mathbf{k} = (k_1, k_2)$ and $k = |\mathbf{k}| = \sqrt{k_1^2 + k_2^2}$

lacktriangle consider the (linearized) layered model with f=0 but now include y dependency o plane wave

$$\frac{\partial u}{\partial t} - \mathcal{H} = -g \frac{\partial h}{\partial x} \; , \; \frac{\partial v}{\partial t} + \mathcal{H} = -g \frac{\partial h}{\partial y} \; , \; \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

combine momentum and thickness equation to wave equation

$$\nabla \cdot \frac{\partial \mathbf{u}}{\partial t} = -\nabla \cdot g \nabla h \; , \; \frac{\partial}{\partial t} \frac{\partial h}{\partial t} + \frac{\partial}{\partial t} H \nabla \cdot \mathbf{u} = 0 \; \to \; \frac{\partial^2 h}{\partial t^2} - g H \nabla^2 h = 0$$

• wave solution $h = A \exp i(k_1x + k_2y - \omega t) = A \exp i(\mathbf{k} \cdot \mathbf{x} - \omega t)$

$$\frac{\partial h}{\partial t} = -i\omega A \exp i(...) \quad , \quad \frac{\partial^2 h}{\partial t^2} = (i\omega)^2 A \exp i(...) = -\omega^2 A \exp i(...)$$

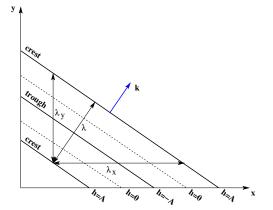
$$\nabla h = i\mathbf{k} A \exp i(...) \quad , \quad \nabla \cdot \nabla h = i^2\mathbf{k} \cdot \mathbf{k} A \exp i(...) = -k^2 A \exp i(...)$$
with wavenumber vector $\mathbf{k} = (k_1, k_2)$ and $k = |\mathbf{k}| = \sqrt{k_1^2 + k_2^2}$

▶ this works as long as

$$-\omega^2 \exp i(..) + k^2 g H \exp i(..) = 0 \rightarrow \omega^2 = k^2 g H \rightarrow \omega = \pm k \sqrt{g H}$$

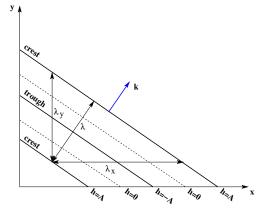
which is still the dispersion relation for a gravity wave (for $f = 0$)

- ▶ plane gravity wave (for f = 0) is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- \triangleright wavenumber vector \mathbf{k} gives direction of phase propagation

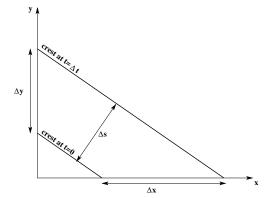


- ▶ plane gravity wave (for f = 0) is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- ightharpoonup wavenumber vector k gives direction of phase propagation
- \blacktriangleright zonal and meridional wave length λ_x , λ_y and "real" wavelength λ

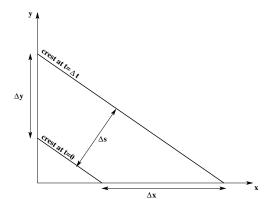
$$\lambda_x=2\pi/k_1\ ,\ \lambda_y=2\pi/k_2\ ,\ \lambda=2\pi/k=2\pi/\sqrt{k_1^2+k_2^2}$$
 but note that $\lambda\neq\sqrt{\lambda_x^2+\lambda_y^2}$



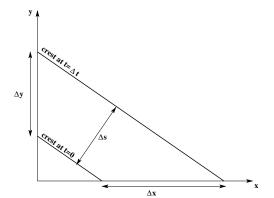
- ▶ plane gravity wave (for f = 0) is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- ▶ phase velocity c with dispersion relation $c = \pm \sqrt{gH}$ or $\omega = \pm k\sqrt{gH}$



- ▶ plane gravity wave (for f = 0) is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- phase velocity c with dispersion relation $c=\pm\sqrt{gH}$ or $\omega=\pm k\sqrt{gH}$
- phase propagates from t=0 to $t=\Delta t$ the distance $\Delta s=c\Delta t$



- ▶ plane gravity wave (for f = 0) is given by $h = A \exp i(\mathbf{k} \cdot \mathbf{x} \omega t)$
- ▶ phase velocity c with dispersion relation $c = \pm \sqrt{gH}$ or $\omega = \pm k\sqrt{gH}$
- lacktriangle phase propagates from t=0 to $t=\Delta t$ the distance $\Delta s=c\Delta t$
- ▶ along x-axis the distance $\Delta x = c_x \Delta t = \Delta t \, \omega/k_1 \rightarrow c_x = \omega/k_1$ along y-axis the distance $\Delta y = c_y \Delta t = \Delta t \, \omega/k_2 \rightarrow c_y = \omega/k_2$ but note that $c \neq \sqrt{c_x^2 + c_y^2}$



Waves

Layered models

Gravity waves without rotation

One-dimensional wave Plane wave

Two waves

Gravity waves with rotation
Kelvin waves
Geostrophic adjustment

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

with
$$\omega=|\pmb{k}|\sqrt{gH}=\omega(\pmb{k})$$
 and $\omega'=|\pmb{k}'|\sqrt{gH}=\omega(\pmb{k}')$

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$= 2A\cos\left(\frac{\mathbf{k}' - \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' - \omega}{2}t\right)\cos\left(\frac{\mathbf{k}' + \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' + \omega}{2}t\right)$$
with $\omega = |\mathbf{k}|\sqrt{gH} = \omega(\mathbf{k})$ and $\omega' = |\mathbf{k}'|\sqrt{gH} = \omega(\mathbf{k}')$

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$= 2A\cos\left(\frac{\mathbf{k}' - \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' - \omega}{2}t\right)\cos\left(\frac{\mathbf{k}' + \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' + \omega}{2}t\right)$$

with
$$\omega=|{m k}|\sqrt{gH}=\omega({m k})$$
 and $\omega'=|{m k}'|\sqrt{gH}=\omega({m k}')$

• for similar wave numbers $\mathbf{k}' = \mathbf{k} + \Delta \mathbf{k}$ with small $\Delta \mathbf{k}$

$$\omega(\mathbf{k}') = \omega(\mathbf{k} + \Delta \mathbf{k}) = \omega(\mathbf{k}) + \frac{\partial \omega}{\partial k_1} \Delta k_x + \frac{\partial \omega}{\partial k_2} \Delta k_y + \cdots$$

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$= 2A\cos\left(\frac{\mathbf{k}' - \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' - \omega}{2}t\right)\cos\left(\frac{\mathbf{k}' + \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' + \omega}{2}t\right)$$

with $\omega=|{m k}|\sqrt{gH}=\omega({m k})$ and $\omega'=|{m k}'|\sqrt{gH}=\omega({m k}')$

• for similar wave numbers ${m k}' = {m k} + \Delta {m k}$ with small $\Delta {m k}$

$$\omega(\mathbf{k}') = \omega(\mathbf{k} + \Delta \mathbf{k}) = \omega(\mathbf{k}) + \frac{\partial \omega}{\partial k_1} \Delta k_x + \frac{\partial \omega}{\partial k_2} \Delta k_y + \cdots$$
$$= \omega(\mathbf{k}) + \mathbf{c}_g \cdot \Delta \mathbf{k} + \cdots$$

with the group velocity $\mathbf{c}_g = \left(\frac{\partial \omega}{\partial k_1}, \frac{\partial \omega}{\partial k_2}\right) = \partial \omega / \partial \mathbf{k}$

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$= 2A\cos\left(\frac{\mathbf{k}' - \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' - \omega}{2}t\right)\cos\left(\frac{\mathbf{k}' + \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' + \omega}{2}t\right)$$

with $\omega=|{m k}|\sqrt{gH}=\omega({m k})$ and $\omega'=|{m k}'|\sqrt{gH}=\omega({m k}')$

• for similar wave numbers ${\pmb k}'={\pmb k}+\Delta {\pmb k}$ with small $\Delta {\pmb k}$

$$\omega(\mathbf{k}') = \omega(\mathbf{k} + \Delta \mathbf{k}) = \omega(\mathbf{k}) + \frac{\partial \omega}{\partial k_1} \Delta k_x + \frac{\partial \omega}{\partial k_2} \Delta k_y + \cdots$$
$$= \omega(\mathbf{k}) + \mathbf{c}_g \cdot \Delta \mathbf{k} + \cdots \rightarrow \omega(\mathbf{k}') - \omega(\mathbf{k}) \approx \mathbf{c}_g \cdot \Delta \mathbf{k}$$

with the group velocity $\mathbf{c}_{\mathbf{g}} = \left(\frac{\partial \omega}{\partial k_1}, \frac{\partial \omega}{\partial k_2}\right) = \partial \omega / \partial \mathbf{k}$

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$= 2A\cos\left(\frac{\mathbf{k}' - \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' - \omega}{2}t\right)\cos\left(\frac{\mathbf{k}' + \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' + \omega}{2}t\right)$$

with $\omega=|{\pmb k}|\sqrt{gH}=\omega({\pmb k})$ and $\omega'=|{\pmb k}'|\sqrt{gH}=\omega({\pmb k}')$

• for similar wave numbers ${m k}'={m k}+\Delta{m k}$ with small $\Delta{m k}$

$$\omega(\mathbf{k}') = \omega(\mathbf{k} + \Delta \mathbf{k}) = \omega(\mathbf{k}) + \frac{\partial \omega}{\partial k_1} \Delta k_x + \frac{\partial \omega}{\partial k_2} \Delta k_y + \cdots$$

$$= \omega(\mathbf{k}) + \mathbf{c}_g \cdot \Delta \mathbf{k} + \cdots \rightarrow \omega(\mathbf{k}') - \omega(\mathbf{k}) \approx \mathbf{c}_g \cdot \Delta \mathbf{k}$$
with the group velocity $\mathbf{c}_g = \left(\frac{\partial \omega}{\partial k_1}, \frac{\partial \omega}{\partial k_2}\right) = \partial \omega / \partial \mathbf{k}$

$$h \approx 2A \cos\left(\frac{\Delta \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\mathbf{c}_g \cdot \Delta \mathbf{k}}{2} t\right) \cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$$

4日 → 4日 → 4目 → 4目 → 990

 \blacktriangleright add two waves with different k and ω but same amplitude

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$= 2A\cos\left(\frac{\mathbf{k}' - \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' - \omega}{2}t\right)\cos\left(\frac{\mathbf{k}' + \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\omega' + \omega}{2}t\right)$$

with $\omega=|{\pmb k}|\sqrt{gH}=\omega({\pmb k})$ and $\omega'=|{\pmb k}'|\sqrt{gH}=\omega({\pmb k}')$

• for similar wave numbers ${\pmb k}'={\pmb k}+\Delta {\pmb k}$ with small $\Delta {\pmb k}$

$$\omega(\mathbf{k}') = \omega(\mathbf{k} + \Delta \mathbf{k}) = \omega(\mathbf{k}) + \frac{\partial \omega}{\partial k_1} \Delta k_x + \frac{\partial \omega}{\partial k_2} \Delta k_y + \cdots$$
$$= \omega(\mathbf{k}) + \mathbf{c}_g \cdot \Delta \mathbf{k} + \cdots \rightarrow \omega(\mathbf{k}') - \omega(\mathbf{k}) \approx \mathbf{c}_g \cdot \Delta \mathbf{k}$$

with the group velocity $\mathbf{c}_{\mathbf{g}} = \left(\frac{\partial \omega}{\partial k_1}, \frac{\partial \omega}{\partial k_2}\right) = \partial \omega / \partial \mathbf{k}$

$$h \approx 2A \cos \left(\frac{\Delta \mathbf{k}}{2} \cdot \mathbf{x} - \frac{\mathbf{c}_g \cdot \Delta \mathbf{k}}{2} t\right) \cos \left(\mathbf{k} \cdot \mathbf{x} - \omega t\right)$$
$$h \approx 2A \cos \left(\frac{\Delta \mathbf{k}}{2} \cdot \left[\mathbf{x} - \mathbf{c}_g t\right]\right) \cos \left(\mathbf{k} \cdot \mathbf{x} - \omega t\right)$$

ightharpoonup amplitude modulation with speed $oldsymbol{c}_{g}$ and wave length $\Delta oldsymbol{k}$

lacktriangle add two waves with different $m{k}$ and ω but same amplitude

$$h = A\cos(\mathbf{k} \cdot \mathbf{x} - \omega t) + A\cos(\mathbf{k}' \cdot \mathbf{x} - \omega' t)$$

$$h \approx 2A\cos\left(\frac{\Delta \mathbf{k}}{2} \cdot [\mathbf{x} - \mathbf{c}_g t]\right)\cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$$

with the wavenumber difference $\Delta \mathbf{k} = \mathbf{k}' - \mathbf{k}$ and the group velocity $\mathbf{c}_{g} = \left(\frac{\partial \omega}{\partial k_{1}}, \frac{\partial \omega}{\partial k_{2}}\right) = \partial \omega / \partial \mathbf{k}$

lacksquare amplitude modulation with speed $oldsymbol{c}_g$ and wave length $\Delta oldsymbol{k}$

- $ightharpoonup c_g$ is the speed at which the amplitudes (energy) propagates
- \triangleright while c is the propagation speed of the phase (in the direction k)
- both are in general different and different from particle velocity

Waves

Gravity waves with rotation

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y}$$

$$\frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x} , \quad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y}$$

$$\frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

▶ take divergence of mom. equation, i.e. $\partial (1.eqn)/\partial x + \partial (2.eqn)/\partial y$

$$\frac{\partial}{\partial x}$$
 (1.eqn) : $\frac{\partial}{\partial t} \frac{\partial u}{\partial x} - \frac{\partial}{\partial x} (fv) = -g \frac{\partial^2 h}{\partial x^2}$

$$\begin{split} \frac{\partial u}{\partial t} - fv &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

▶ take divergence of mom. equation, i.e. $\partial (1.eqn)/\partial x + \partial (2.eqn)/\partial y$

$$\frac{\partial}{\partial x}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial x} - \frac{\partial}{\partial x}(fv) = -g\frac{\partial^2 h}{\partial x^2}$$
$$\frac{\partial}{\partial y}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial y} + \frac{\partial}{\partial y}(fu) = -g\frac{\partial^2 h}{\partial y^2}$$

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y}$$

$$\frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

▶ take divergence of mom. equation, i.e. $\partial (1.eqn)/\partial x + \partial (2.eqn)/\partial y$

$$\frac{\partial}{\partial x}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial x} - \frac{\partial}{\partial x}(fv) = -g\frac{\partial^2 h}{\partial x^2}$$
$$\frac{\partial}{\partial y}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial y} + \frac{\partial}{\partial y}(fu) = -g\frac{\partial^2 h}{\partial y^2}$$

add both

$$\frac{\partial}{\partial t}\xi - \frac{\partial}{\partial x}(fv) + \frac{\partial}{\partial v}(fu) = -g\nabla^2 h$$

with $\xi = \partial u/\partial x + \partial v/\partial y$

$$\begin{split} \frac{\partial u}{\partial t} - fv &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

▶ take divergence of mom. equation, i.e. $\partial (1.eqn)/\partial x + \partial (2.eqn)/\partial y$

$$\frac{\partial}{\partial x}(1.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial u}{\partial x} - \frac{\partial}{\partial x}(fv) = -g\frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial}{\partial y}(2.\text{eqn}) : \frac{\partial}{\partial t}\frac{\partial v}{\partial y} + \frac{\partial}{\partial y}(fu) = -g\frac{\partial^2 h}{\partial y^2}$$

add both

$$\frac{\partial}{\partial t} \xi - \frac{\partial}{\partial x} (fv) + \frac{\partial}{\partial y} (fu) = -g \nabla^2 h$$
$$\frac{\partial}{\partial t} \xi - f \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = -g \nabla^2 h$$

with $\xi = \partial u/\partial x + \partial v/\partial y$ and for f = const

$$\begin{split} \frac{\partial u}{\partial t} - fv &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + fu &= -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

$$\begin{split} \frac{\partial u}{\partial t} - f v &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + f u = -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

▶ take curl of mom. equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}$$
 (2.eqn) : $\frac{\partial}{\partial x} \frac{\partial v}{\partial t} + \frac{\partial}{\partial x} (fu) = -g \frac{\partial^2 h}{\partial x \partial y}$

$$\begin{split} \frac{\partial u}{\partial t} - f v &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + f u = -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

▶ take curl of mom. equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial x}\frac{\partial v}{\partial t} + \frac{\partial}{\partial x}(fu) = -g\frac{\partial^2 h}{\partial x \partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial y}\frac{\partial u}{\partial t} - \frac{\partial}{\partial y}(fv) = -g\frac{\partial^2 h}{\partial x \partial y}$$

$$\begin{split} \frac{\partial u}{\partial t} - fv &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

▶ take curl of mom. equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial x}\frac{\partial v}{\partial t} + \frac{\partial}{\partial x}(fu) = -g\frac{\partial^2 h}{\partial x \partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial y}\frac{\partial u}{\partial t} - \frac{\partial}{\partial y}(fv) = -g\frac{\partial^2 h}{\partial x \partial y}$$

subtract both

$$\frac{\partial}{\partial t}\zeta + \frac{\partial}{\partial x}(fu) + \frac{\partial}{\partial y}(fv) = 0$$

with $\zeta = \partial v / \partial x - \partial u / \partial y$

$$\begin{split} \frac{\partial u}{\partial t} - f v &= -g \frac{\partial h}{\partial x} \qquad , \qquad \frac{\partial v}{\partial t} + f u = -g \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \end{split}$$

▶ take curl of mom. equation, i.e. $\partial (2.eqn)/\partial x - \partial (1.eqn)/\partial y$

$$\frac{\partial}{\partial x}(2.\text{eqn}) : \frac{\partial}{\partial x}\frac{\partial v}{\partial t} + \frac{\partial}{\partial x}(fu) = -g\frac{\partial^2 h}{\partial x \partial y}$$
$$\frac{\partial}{\partial y}(1.\text{eqn}) : \frac{\partial}{\partial y}\frac{\partial u}{\partial t} - \frac{\partial}{\partial y}(fv) = -g\frac{\partial^2 h}{\partial x \partial y}$$

subtract both

$$\frac{\partial}{\partial t}\zeta + \frac{\partial}{\partial x}(fu) + \frac{\partial}{\partial y}(fv) = 0$$
$$\frac{\partial}{\partial t}\zeta - f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

with $\zeta = \partial v/\partial x - \partial u/\partial y$ and for f = const

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v/\partial x - \partial u/\partial y$ and $\xi = \partial u/\partial x + \partial v/\partial y$

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v/\partial x - \partial u/\partial y$ and $\xi = \partial u/\partial x + \partial v/\partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v/\partial x - \partial u/\partial y$ and $\xi = \partial u/\partial x + \partial v/\partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$
$$\frac{\partial^2}{\partial t^2} \xi + f^2 \xi = g H \nabla^2 \xi$$

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v/\partial x - \partial u/\partial y$ and $\xi = \partial u/\partial x + \partial v/\partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$
$$\frac{\partial^2}{\partial t^2} \xi + f^2 \xi = gH \nabla^2 \xi$$
$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - (gH/f^2) \nabla^2 \xi \right) = 0$$

$$\frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \zeta}{\partial t} + f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

$$\frac{\partial \xi}{\partial t} - f\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = -g\nabla^2 h$$

with $\zeta = \partial v/\partial x - \partial u/\partial y$ and $\xi = \partial u/\partial x + \partial v/\partial y$

time differentiate divergence and replace with curl and thickness eq.

$$\frac{\partial^2 \xi}{\partial t^2} - f \frac{\partial \zeta}{\partial t} = -g \nabla^2 \frac{\partial h}{\partial t}$$

$$\frac{\partial^2}{\partial t^2} \xi + f^2 \xi = gH \nabla^2 \xi$$

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - (gH/f^2) \nabla^2 \xi \right) = 0$$

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \nabla^2 \xi \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

▶ look for wave solutions

$$\xi(x,y,t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

look for wave solutions

$$\xi(x,y,t) = \xi_0 \exp i(k_1x + k_2y - \omega t)$$

with complex constant ξ_0 which yields

$$(-i\omega)^2 \xi_0 \exp(...) + f^2 (1 - R^2(ik_1)^2 - R^2(ik_2)^2) \xi_0 \exp(...) = 0$$

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

look for wave solutions

$$\xi(x,y,t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0 which yields

$$(-i\omega)^2 \xi_0 \exp(...) + f^2 \left(1 - R^2 (ik_1)^2 - R^2 (ik_2)^2\right) \xi_0 \exp(...) = 0$$
$$-\omega^2 + f^2 \left(1 + R^2 k_1^2 + R^2 k_2^2\right) = 0$$

$$\frac{\partial^2 \xi}{\partial t^2} + f^2 \left(\xi - R^2 \frac{\partial^2 \xi}{\partial x^2} - R^2 \frac{\partial^2 \xi}{\partial y^2} \right) = 0$$

with Rossby radius $R = \sqrt{gH}/|f|$

look for wave solutions

$$\xi(x,y,t) = \xi_0 \exp i(k_1 x + k_2 y - \omega t)$$

with complex constant ξ_0 which yields

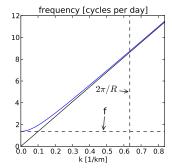
$$(-i\omega)^2 \xi_0 \exp(...) + f^2 \left(1 - R^2 (ik_1)^2 - R^2 (ik_2)^2\right) \xi_0 \exp(...) = 0$$
$$-\omega^2 + f^2 \left(1 + R^2 k_1^2 + R^2 k_2^2\right) = 0$$

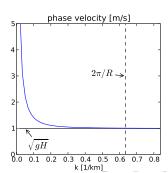
ightharpoonup this is a (plane wave) solution as long as ω satisfies

$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

with
$$k^2 = |\mathbf{k}|^2 = k_1^2 + k_2^2$$

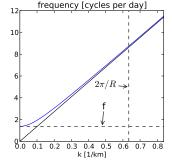
$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

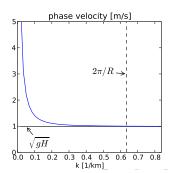




$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

• different phase velocity $c = \omega/k$ for different $k \to \text{dispersive}$ wave

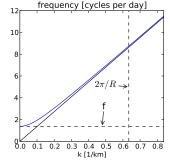


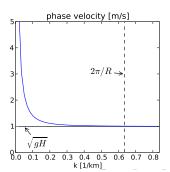


$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

- ▶ different phase velocity $c = \omega/k$ for different $k \to dispersive$ wave
- short wave limit for $\lambda = 2\pi/k \ll R \rightarrow R^2k^2 \gg 1$

$$\omega \stackrel{Rk \to \infty}{=} \pm \sqrt{f^2 R^2 k^2} = \pm k \sqrt{gH}$$



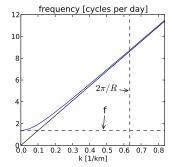


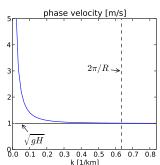
$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

- ▶ different phase velocity $c = \omega/k$ for different $k \to \text{dispersive}$ wave
- short wave limit for $\lambda = 2\pi/k \ll R \rightarrow R^2k^2 \gg 1$

$$\omega \stackrel{Rk \to \infty}{=} \pm \sqrt{f^2 R^2 k^2} = \pm k \sqrt{gH} \ , \ c \stackrel{Rk \to \infty}{=} \pm \sqrt{gH}$$

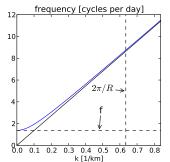
ightarrow (non-dispersive) gravity waves without rotation (black lines)

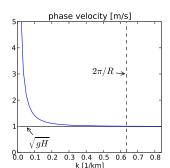




$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

lacktriangle different phase velocity $c=\omega/k$ for different $m{k} o$ dispersive wave

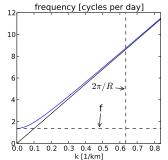


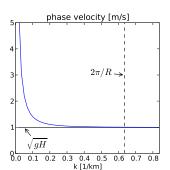


$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

- different phase velocity $c = \omega/k$ for different $k \to \text{dispersive}$ wave
- ▶ long wave limit for $\lambda = 2\pi/k \gg R \rightarrow R^2k^2 \ll 1$

$$\omega \stackrel{Rk \to 0}{=} \pm f$$
 , $c \stackrel{Rk \to 0}{=} \pm \infty$





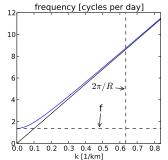
$$\omega = \pm \sqrt{f^2 (1 + R^2 k^2)}$$
, $c = \pm \sqrt{f^2 (1/k^2 + R^2)}$

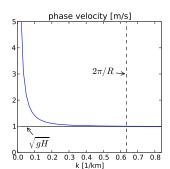
- different phase velocity $c = \omega/k$ for different $k \to \text{dispersive}$ wave
- ▶ long wave limit for $\lambda = 2\pi/k \gg R \rightarrow R^2k^2 \ll 1$

$$\omega \stackrel{Rk \to 0}{=} \pm f$$
 , $c \stackrel{Rk \to 0}{=} \pm \infty$

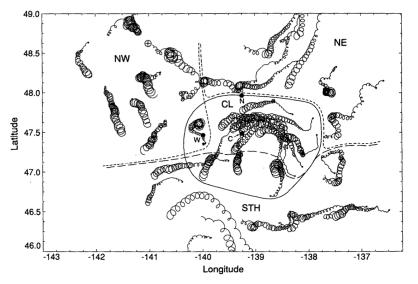
▶ these are inertial oscillations which also result from

$$\partial u/\partial t - fv = 0$$
 , $\partial v/\partial t + fu = 0$

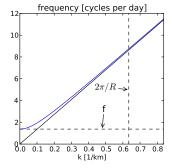


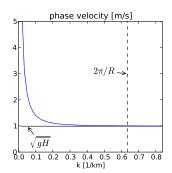


lacktriangle trajectories of surface drifter ightarrow inertial oscillations



$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

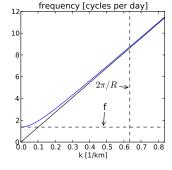


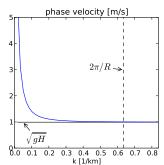


$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

• group velocity ${m c}_g = \partial \omega / \partial {m k}$ is given by

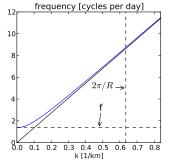
$$\boldsymbol{c}_{g} = \begin{pmatrix} \frac{\partial \omega}{\partial k_{1}} \\ \frac{\partial \omega}{\partial k_{2}} \end{pmatrix} = \pm \begin{pmatrix} \frac{1}{2} \left(f^{2} \left(1 + R^{2} k^{2} \right) \right)^{-1/2} f^{2} R^{2} 2 k_{1} \\ \frac{1}{2} \left(f^{2} \left(1 + R^{2} k^{2} \right) \right)^{-1/2} f^{2} R^{2} 2 k_{2} \end{pmatrix} = \frac{gH}{\omega} \boldsymbol{k}$$

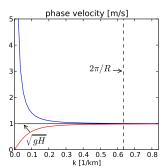




$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

• group velocity is given by $c_g = (gH/\omega)k$ (red line for $f \neq 0$)

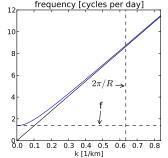


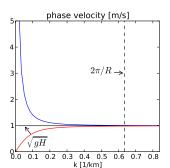


$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

- group velocity is given by $c_g = (gH/\omega)k$ (red line for $f \neq 0$)
- ▶ short wave limit for $\lambda \ll R$

$$\omega \stackrel{\lambda \leq R}{=} \pm k \sqrt{gH} \rightarrow \mathbf{c}_{\mathbf{g}} \stackrel{\lambda \leq R}{=} \pm \sqrt{gH} \mathbf{k}/k = c \mathbf{k}/k$$





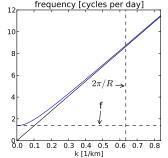
$$\omega = \pm \sqrt{f^2 \left(1 + R^2 k^2\right)}$$

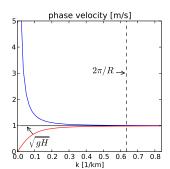
- group velocity is given by $c_g = (gH/\omega)k$ (red line for $f \neq 0$)
- ▶ short wave limit for $\lambda \ll R$

$$\omega \overset{\lambda \leq R}{=} \pm k \sqrt{gH} \rightarrow \boldsymbol{c}_{g} \overset{\lambda \leq R}{=} \pm \sqrt{gH} \, \boldsymbol{k}/k = c \, \boldsymbol{k}/k$$

▶ long wave limit for $\lambda \gg R$

$$\omega \stackrel{\lambda \gg R}{=} \pm f \rightarrow \boldsymbol{c}_{g} \stackrel{\lambda \gg R}{=} 0$$





Waves

Layered models

Gravity waves without rotation

One-dimensional wav

riane wave

I wo waves

Gravity waves with rotation

Kelvin waves

Geostrophic adjustment

ightharpoonup consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \; , \; \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} \; , \; \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

• suppose we have a solid boundary at $y = 0 \rightarrow v|_{y=0} = 0$

ightharpoonup consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

- suppose we have a solid boundary at $y=0
 ightarrow v|_{y=0}=0$
- ▶ look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \ fu = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0$$

ightharpoonup consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \ , \ \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} \ , \ \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

- suppose we have a solid boundary at $y=0
 ightarrow v|_{y=0}=0$
- ▶ look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \ fu = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0$$

combining the first and the last equation yields wave equation

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A \exp i(kx - \omega t)$, but now A = A(y)

ightharpoonup consider again the (linearized) layered model with $f \neq 0$

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x} , \ \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

- suppose we have a solid boundary at $y=0
 ightarrow v|_{y=0}=0$
- ▶ look for solutions with v = 0 everywhere

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \ fu = -g \frac{\partial h}{\partial y} , \ \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0$$

combining the first and the last equation yields wave equation

$$\frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A \exp i(kx - \omega t)$, but now A = A(y)

- gravity wave (f = 0) in x with phase velocity $c = \pm \sqrt{gH}$
- ▶ for y dependency of A we consider the second equation

$$\frac{\partial u}{\partial t} = -g\frac{\partial h}{\partial x} , \frac{\partial h}{\partial t} + H\frac{\partial u}{\partial x} = 0 \rightarrow \frac{\partial^2 h}{\partial t^2} - gH\frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k\sqrt{gH}$

▶ for *y* dependency of *A* we consider the second equation

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0 \rightarrow \frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k\sqrt{gH}$

- ▶ for *y* dependency of *A* we consider the second equation
- ▶ assume wave $u = U(y) \exp i(kx \omega t)$ with amplitude U from

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \rightarrow -i\omega U \exp i(...) = -gikA \exp i(...) \rightarrow U = g \frac{kA}{\omega}$$

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0 \rightarrow \frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k\sqrt{gH}$

- for y dependency of A we consider the second equation
- ▶ assume wave $u = U(y) \exp i(kx \omega t)$ with amplitude U from

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \rightarrow -i\omega U \exp i(...) = -gikA \exp i(...) \rightarrow U = g \frac{kA}{\omega}$$

using this in the second equation yields

$$fu = -g \frac{\partial h}{\partial y} \rightarrow (f/c)A = -A' \rightarrow A = A_0 e^{-f y/c} = A_0 e^{\pm y/R}$$

with $c = \omega/k = \pm \sqrt{gH}$ and with Rossby radius $R = \sqrt{gH}/|f|$

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} , \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0 \rightarrow \frac{\partial^2 h}{\partial t^2} - gH \frac{\partial^2 h}{\partial x^2} = 0$$

with solution $h = A(y) \exp i(kx - \omega t)$ and $\omega = \pm k\sqrt{gH}$

- for y dependency of A we consider the second equation
- ▶ assume wave $u = U(y) \exp i(kx \omega t)$ with amplitude U from

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \rightarrow -i\omega U \exp i(...) = -gikA \exp i(...) \rightarrow U = g \frac{kA}{\omega}$$

using this in the second equation yields

$$fu = -g \frac{\partial h}{\partial y} \rightarrow (f/c)A = -A' \rightarrow A = A_0 e^{-f y/c} = A_0 e^{\pm y/R}$$

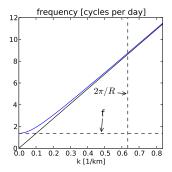
with $c=\omega/k=\pm\sqrt{gH}$ and with Rossby radius $R=\sqrt{gH}/|f|$

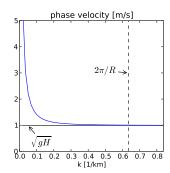
- only the decaying solution in y is reasonable
- Kelvin wave

• Kelvin wave along solid boundary at y = 0

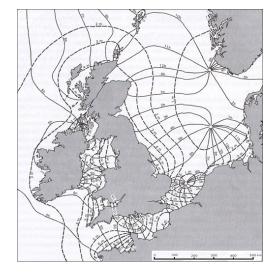
$$h=A_0e^{\pm y/R}\exp i(kx-\omega t)\;,\; u=(gA_0/c)e^{\pm y/R}\exp i(kx-\omega t)\;,\; v=0$$
 and $\omega=\pm k\sqrt{gH}$ and with Rossby radius $R=\sqrt{gH}/|f|$

- only the decaying solution in y is reasonable
- works in the same way for boundary along x or any other direction





▶ tidal Kelvin wave in the North Sea



from Klett (2014)

Waves

Gravity waves without rotation
One-dimensional wave
Plane wave
Two waves
Gravity waves with rotation
Kelvin waves

Geostrophic adjustment

ightharpoonup consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \; , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} \; , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

ightharpoonup consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \; , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} \; , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ (linearized, $D/Dt \rightarrow \partial/\partial t$) potential vorticity equation

$$\frac{\partial q}{\partial t} = 0$$
 , $q = \frac{\zeta + f}{h} \approx \zeta - \frac{f}{H}h + f$

▶ f in q for f = const does not matter $\rightarrow q = \zeta - (f/H)h$

consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial h}{\partial x} \; , \quad \frac{\partial v}{\partial t} + fu = -g\frac{\partial h}{\partial y} \; , \quad \frac{\partial h}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0$$

▶ (linearized, $D/Dt \rightarrow \partial/\partial t$) potential vorticity equation

$$\frac{\partial q}{\partial t} = 0$$
 , $q = \frac{\zeta + f}{h} \approx \zeta - \frac{f}{H}h + f$

- ▶ f in q for f = const does not matter $\rightarrow q = \zeta (f/H)h$
- ightharpoonup consider as initial condition $oldsymbol{u}=0$ and h a step function such that

$$h|_{t=0} = \begin{cases} h_0, & \text{if } x < 0 \\ -h_0, & \text{if } x > 0 \end{cases} \rightarrow q_0 = q|_{t=0} = \begin{cases} -fh_0/H, & \text{if } x < 0 \\ fh_0/H, & \text{if } x > 0 \end{cases}$$

ightharpoonup consider the (linearized) layered model with f = const

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x} \ , \quad \frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y} \ , \quad \frac{\partial h}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$$

• (linearized, $D/Dt o \partial/\partial t$) potential vorticity equation

$$\frac{\partial q}{\partial t} = 0$$
 , $q = \frac{\zeta + f}{h} \approx \zeta - \frac{f}{H}h + f$

- ▶ f in q for f = const does not matter $\rightarrow q = \zeta (f/H)h$
- ightharpoonup consider as initial condition u=0 and h a step function such that

$$h|_{t=0} = egin{cases} h_0, & \text{if } x < 0 \\ -h_0, & \text{if } x > 0 \end{cases} \ o \ q_0 = q|_{t=0} = egin{cases} -fh_0/H, & \text{if } x < 0 \\ fh_0/H, & \text{if } x > 0 \end{cases}$$

• using $q(t)=q_0$ steady state solution $(t o \infty)$ is given by

$$fv_{\infty} = g \frac{\partial h_{\infty}}{\partial x}$$
, $fu_{\infty} = -g \frac{\partial h_{\infty}}{\partial y}$

$$\rightarrow q_{\infty} = \frac{g}{f} \frac{\partial^2 h_{\infty}}{\partial x^2} + \frac{g}{f} \frac{\partial^2 h_{\infty}}{\partial v^2} - \frac{f}{H} h_{\infty} = q_0$$

$$ightarrow oldsymbol{
abla}^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0$$
 with Rossby radius $R = \sqrt{gH}/|f|$

• steady state solution $(t \to \infty)$ is given by

$$\nabla^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

• steady state solution $(t \to \infty)$ is given by

$$\nabla^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

▶ solution of h_{∞} is given by

$$h(x)_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

• steady state solution $(t o \infty)$ is given by

$$\nabla^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

• solution of h_{∞} is given by

$$h(x)_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

▶ since for x < 0 $h'_{\infty} = -h_0/R e^{x/R}$ and $h''_{\infty} = -h_0/R^2 e^{x/R}$ and $h''_{\infty} - R^{-2}h_{\infty} = -h_0R^{-2}e^{x/R} - R^{-2}h_0(1 - e^{x/R}) = -R^{-2}h_0$

• steady state solution $(t o \infty)$ is given by

$$abla^2 h_{\infty} - R^{-2} h_{\infty} = (f/g) q_0 = \begin{cases} -R^{-2} h_0, & \text{if } x < 0 \\ R^{-2} h_0, & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

▶ solution of h_{∞} is given by

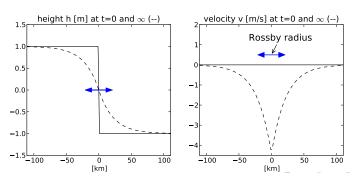
$$h(x)_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

- ▶ since for x < 0 $h'_{\infty} = -h_0/R e^{x/R}$ and $h''_{\infty} = -h_0/R^2 e^{x/R}$ and $h''_{\infty} R^{-2}h_{\infty} = -h_0R^{-2}e^{x/R} R^{-2}h_0(1 e^{x/R}) = -R^{-2}h_0$
- ▶ since for x > 0 $h'_{\infty} = -h_0/R e^{-x/R}$ and $h''_{\infty} = h_0/R^2 e^{-x/R}$ and $h''_{\infty} R^{-2}h_{\infty} = h_0R^{-2}e^{-x/R} + R^{-2}h_0(1 e^{-x/R}) = R^{-2}h_0$

▶ initial and steady state solution of *h* are given by

$$h|_{t=0} = \begin{cases} h_0, & \text{if } x < 0 \\ -h_0, & \text{if } x > 0 \end{cases}, \quad h|_{\infty} = \begin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$



▶ initial and steady state solution of *h* are given by

$$h|_{t=0} = egin{cases} h_0, & \text{if } x < 0 \\ -h_0, & \text{if } x > 0 \end{cases}, \quad h|_{\infty} = egin{cases} h_0(1 - e^{x/R}), & \text{if } x < 0 \\ -h_0(1 - e^{-x/R}), & \text{if } x > 0 \end{cases}$$

with Rossby radius $R = \sqrt{gH}/|f|$

• velocities from $fv_{\infty} = g\partial h_{\infty}/\partial x$ and $fu_{\infty} = -g\partial h_{\infty}/\partial y$

$$u_{\infty} = 0$$
 , $v_{\infty} = (g/f) \begin{cases} -h_0/Re^{x/R}, & \text{if } x < 0 \\ -h_0/Re^{-x/R}, & \text{if } x > 0 \end{cases} = -\frac{gh_0}{fR}e^{-|x|/R}$

