Dynamische und regionale Ozeanographie
WS 2015/16

Carsten Eden und Detlef Quadfasel

Institut fiir Meereskunde, Universitdit Hamburg

December 1, 2015

1/ 45



11 — Waves and Instabilities
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» consider a single layer system in hydrostatic approximation

> assume p = const and no vertical shear du/0z = dv/0z =0

z=0

y p=const u,v,w, and p

L

72=—

> with sea level at z =7 and the bottom at z = —H
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> consider a single layer system in hydrostatic approximation

%—I—U-Vu—fv = —%%
%—I—U-Vv—i-fu = —%g—s
op

oz = —8p
@4_@4_81 = 0
Ox Oy 0z

> assume p = const and no vertical shear du/0z = Ov/0z =0
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Layered models

> consider a single layer system in hydrostatic approximation

%—i—u Vu—-fv = —%%
%—I—U-Vv—i-fu = —%g—s
op

oz = —8p
@4_@4_81 = 0
Ox Oy Oz

> assume p = const and no vertical shear du/0z = Ov/0z =0

> now vertically integrate continuity equation from bottom to top

L) 250 -

with sea level at z =7 and the bottom at z = —H
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> consider a single layer system in hydrostatic approximation

%—i—u Vu—-fv = —%%
%—I—U-Vv—i-fu = —%g—s
op

oz = —8p
@4_@4_81 = 0
Ox Oy 0z

> assume p = const and no vertical shear du/0z = Ov/0z =0

> now vertically integrate continuity equation from bottom to top

T/ 0Ou
/ <8x >d+/ —dz =0
ou Ov

(H-+ ) (aﬁay) bl wln = 0

with sea level at z =7 and the bottom at z = —H
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> assume p = const and no vertical shear du/0z = Ov/0z =0

» vertically integrate continuity equation from bottom to top
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> assume p = const and no vertical shear du/0z = Ov/0z =0

» vertically integrate continuity equation from bottom to top
v
(H+ )(+) +wlp—wl_y = 0

» now use kinematic boundary conditions

877 ol
ot "9

which means no mass flux through upper and lower boundaries

877 (’977

wop =0, wl,= |77
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assume p = const and no vertical shear Qu/J0z = 0v/0z =0
vertically integrate continuity equation from bottom to top
0

u
(H+77)(8X+ay)+wn_W|H =0

now use kinematic boundary conditions

_on . om, on
- ot Ox dy

which means no mass flux through upper and lower boundaries

wepy =0, w + uly + vy

this yields
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Layered models

assume p = const and no vertical shear Ju/0z = dv/0z =0

vertically integrate continuity equation from bottom to top

ou Ov
H — —wl_y = 0
now use kinematic boundary conditions
In on on
wop =0, wly= Erl U\na + V|n@

which means no mass flux through upper and lower boundaries

this yields

ou 0Ov an an on
(H+ )(3x+8)+8t+u8x+vay =0
h @ @ +@+u%+v% = 0

Ox  dy ot Ox dy

which becomes a layer thickness equation for h=H + 7
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Layered models

assume p = const and no vertical shear Qu/J0z = 0v/0z =0
vertically integrate continuity equation from bottom to top
0

u
(H+77)(8X+8y)+wn_W|H =0

now use kinematic boundary conditions
_on g on, On
- ot Ox dy

which means no mass flux through upper and lower boundaries

wepy =0, w + uly + vy

this yields

ou 0Ov an an on
(H+ )(3x+8)+8t+u8x+vay =0
h @ @ +@+u%+v% = 0
Ox  dy ot Ox dy
oh 0 0]
E—F&(uh)—f—@(vh) = 0

which becomes a layer thickness equation for h=H + 7
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> assume p = const and integrate hydrostatic balance from z to top

o9 _ _
5, = &
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> assume p = const and integrate hydrostatic balance from z to top

gz—g/’

T op n
/ 3, % ply — plz = —gp/ dz = —gp(n — 2)
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> assume p = const and integrate hydrostatic balance from z to top

gz—g/’

T op n
/Eﬂw = mrwb=—w/qﬂ=—ww—ﬂ

p = pl,—gp(z—n)



Waves Layered models 7/ 45

> assume p = const and integrate hydrostatic balance from z to top

o _
5y — &
n 6 n
/z ngz = ply—pl:= —gp/z dz = —gp(n — 2)
p = ply—gp(z—n)
Vp = gpVn=gpVh

with layer thickness h=n+ H
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> assume p = const and integrate hydrostatic balance from z to top

o _ _
5, — &r
" dp n
/zaidz = pln—Plz=—gp/z dz = —gp(n — 2)
p = ply—ep(z—n)

Vp = gpVn=gpVh

with layer thickness h=n+ H

> momentum equation becomes

ou 190p Oh
- ) _fy = P 7
8t+u V=t p Ox gax
ov 190p Oh
bl A v4 fu = -2 _ _GZ7
8t+u v+ fu 3y gay

since h(x,y,t) and du/0z = dv/Oz = 0 equations are now 2-D
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Layered models

> single layer system in hydrostatic approximation

Ju Oh

E—FU'VU—I(V = —ga

v Oh

E"’U'VV"’fU = —g@
oh 0

B
9e T aelh) 5 (h) = 0
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> single layer system in hydrostatic approximation

ou oh
E +u- Vu—-fv = —ga
v Oh
ot 4+u-Vv+fu = —g—ay
oh 0 0
E—&-a(uh)-l-@(vh) =0

> neglecting momentum advection for simplicity
and assuming H > nin h=H+n— V- (uh) =~ HV - u
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> single layer system in hydrostatic approximation

ou oh
E +u- Vu—-fv = —ga
v Oh
ot 4+u-Vv+fu = —g—ay
oh 0 0
E—&-a(uh)-l-@(vh) =0

> neglecting momentum advection for simplicity
and assuming H > nin h=H+n— V- (uh) =~ HV - u

ou o _ _ 0h

ot = 8o

@-i-fu _ goh

ot BT
Oh ou Ov

simple system which contains almost all relevant dynamics
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9/ 45
> two layers with p; = p = const and p, = p + Ap = const

> sea surface at z = 7 and layer interface z = —h;

> assume again no vertical shear duy 2/0z = Ov12/0z = 0 in layers

z=0

p=const uv,w,andp,

z=-h. T

/y p+Ap =const u,v,W and p,

z=—H
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> two layers with p; = p = const and p, = p + Ap = const
> sea surface at z = 7 and layer interface z = —h;

> assume again no vertical shear duy 2/0z = Ov12/0z = 0 in layers

z=0
p=const u,v,w,andp,
7z=-h. I
1
/y p+Ap =const u,v,W and p,
z=-H X

> pressure gradient in upper layer gpVn
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two layers with p; = p = const and p, = p + Ap = const
sea surface at z = 7 and layer interface z = —h;

assume again no vertical shear Ouy 2/0z = Ovy 2/0z = 0 in layers

z=0
p=const u,v,w,andp,
7z=-h. I
1
/y p+Ap =const u,v,W and p,
z=-H

X
pressure gradient in upper layer gpVn
pressure gradient in lower layer —g(p + Ap)V h; + gpV (n + h;)
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> upper layer equations

0 0
%+u1-Vul—fv1 = —gaz
0 0
7?+u1-Vv1+fu1 = —gaZ
0 0 0
at(n‘f‘h‘)‘FaUl(n—Fhi)‘f’5V1(77+hi) = 0
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> upper layer equations

%—!—ul-Vul—fvl = —g%
%+u1-Vv1+fu1 = —gg—z
%(U‘i‘hi)—F%Ul(n‘Fhi)‘f’%Vl(n“l‘hi) =0
> lower layer equations
%-ﬁ-uz-Vuz—va = g%%ﬁi—g%
%+U2‘VV2+fU2 = g%gﬁ/i—g%

0 0 0
E(H— h,)+ gUg(H— h,) + aVQ(H— h,) =0
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» assume that lower layer is infinitively deep and motionless

A
0= gTPVh,- — gV

z=0
p=const u,v,w,and p,
z=-h. e S
1
/y p+Ap =const u,=0 v,=0

z=-H - X
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» assume that lower layer is infinitively deep and motionless
A A
Ozg—pVh,-—gVn — —ph;—n:const:O
P P

vanishing pressure variations in lower layer

z=0
p=const uv,w,and p,
z=-h. e S
1
/y p+Ap =const u,=0 v,=0

z=-H - X



Waves Layered models 11/ 45

» assume that lower layer is infinitively deep and motionless
A A A
Ozg—pVh,-—gVn — —ph;—n:const:0 — n:—ph;
P P P

vanishing pressure variations in lower layer

z=0
p=const uv,w,and p,
z=-h. e S
1
/y p+Ap =const u,=0 v,=0

z=-H - X
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> assume that lower layer is infinitively deep and motionless
A A
0=g=CVh —gVy — n="Ch
p p

vanishing pressure variations in lower layer




Waves Layered models 12/ 45

> assume that lower layer is infinitively deep and motionless
A A
0=g=CVh —gVy — n="Ch
p p

vanishing pressure variations in lower layer

> upper layer equations become

0 0
%+u1-Vul—fv1 = —gaz
0 1o}
7?+u1-Vv1+fu1 = —gaZ

0 0 0

a2 hi) + - hi) + = hij) =

8t(n+ )+ aXU1(7]+ )+ 8yvl(77+ ) 0
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> assume that lower layer is infinitively deep and motionless

A A
0 ZngVh;ngn - n= 7ph;

vanishing pressure variations in lower layer

> upper layer equations become

0 Oh;
Tt tuVm—fa = g
0 Oh;
aivtl“y‘U]_'VV1+fU]_ = —/@
0 0 0
h; + —(u1 h; —(v1 h;
ot * 8x(u1 )+ 8y(vl ) 0
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» "barotropic model” and "baroclinic model”
du oh v oh
—4+u-Vu—-fv=—g— , —+u-Vv+fu=—-g_—
gr TUIVUTIV=8g0 0 G T Vv I=—Egs
oh 0 0
— + —(uh)+ —(vh) =0
ot T ax )+ 5, (vh)
> his total thickness (" barotropic™) or layer interface h; (" baroclinic”)
> either g = 9.81m/s? ("barotropic”) or g — gAp/po ("baroclinic”)
=0 1 = M| poconst uywandp,
7:7}1I T
y p=const u,v,w, and p y p+Ap =const =0 v,=0
p
7=-H 7=-H
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Waves

Gravity waves without rotation
One-dimensional wave
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> consider the (linearized) layered model with f =0
and also set y dependency to zero - v =20

o Gon o Bon( )
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> consider the (linearized) layered model with f =0
and also set y dependency to zero - v =20

s s G ()

» combine momentum and thickness equation to wave equation

0 Ou 0 0h 0 Oh 0 Ou 0?h 0%h

Ox Ot oxox ato: " Matox 0 7 a2 &lge =0
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> consider the (linearized) layered model with f =0
and also set y dependency to zero - v =20

s s G ()

» combine momentum and thickness equation to wave equation

O0u__ 00h 00h ,00u_.  Oh L 0h
ox 0t Soxox’ otor  otox o 87ox2 T

> try particular solution h(x, t) = sin k(x — ct)

oh 02h

- — _ - = 2 —
ot kccos k(x — ct) 972 (kc)“ sin k(x — ct)
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> consider the (linearized) layered model with f =0
and also set y dependency to zero - v =20

s s G ()

» combine momentum and thickness equation to wave equation

O0u__ 00h 00h ,00u_.  Oh 0%
ox 0t Soxox’ otor  otox o 870x2

> try particular solution h(x, t) = sin k(x — ct)

oh o*h

= —kccosk(x —ct)

=0

—(ke)? sin k(x — ct)

ot ot
oh d%h 5.
Ix = kcos k(x — ct) w3 = —k*sin k(x — ct)
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Gravity waves without rotation

consider the (linearized) layered model with f =0
and also set y dependency to zero - v =20

s s G ()

combine momentum and thickness equation to wave equation

O0u__ 00h 00h ,00u_.  Oh L 0h
ox 0t Soxox’ otor  otox o 87ox2 T

try particular solution h(x, t) = sin k(x — ct)

Oh 0%h 2 .
% = —kccosk(x —ct) 92 = —(kc)* sin k(x — ct)
Oh d%h

= kcos k(x — ct) = —k%sink(x — ct)

dx T ox?
this works as long as
—(kc)?sin(..) + k’gHsin(.) =0 — > =gH — c=++/gH

which is the dispersion relation for a gravity wave (for f = 0)

16/ 45
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> gravity wave equation (for f = 0)
oh o

oz & ox2

> a particular solution is h(x, t) = sin k(x — ct)

=0
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> gravity wave equation (for f = 0)
d%h 0%h
U Hqe D
o~ &ox

> a particular solution is h(x, t) = sin k(x — ct)

=0

> h = Asin k(x — ct) with constant amplitude A is also solution
and also h = Asin(k(x — ct) + ¢) with constant phase ¢
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> gravity wave equation (for f = 0)

0?h ” 0?h

o~ &ox

> a particular solution is h(x, t) = sin k(x — ct)

=0

v

h = Asin k(x — ct) with constant amplitude A is also solution
and also h = Asin(k(x — ct) + ¢) with constant phase ¢

» more general wave solution is

h = Asin k(x — ct) 4+ B cos k(x — ct)
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Gravity waves without rotation

gravity wave equation (for f = 0)
0?h 0?h
ot? Ox?

a particular solution is h(x, t) = sin k(x — ct)

=0

h = Asin k(x — ct) with constant amplitude A is also solution
and also h = Asin(k(x — ct) + ¢) with constant phase ¢

more general wave solution is
h = Asin k(x — ct) 4+ B cos k(x — ct)
or write more compact as

h = Re{aett—en}

with complex constant A with Re{A} = A, and Im{A} = A;

17/ 45
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gravity wave equation (for f = 0)
0?h 0?h
ot? Ox?

a particular solution is h(x, t) = sin k(x — ct)

=0

h = Asin k(x — ct) with constant amplitude A is also solution
and also h = Asin(k(x — ct) + ¢) with constant phase ¢

more general wave solution is
h = Asin k(x — ct) 4+ B cos k(x — ct)
or write more compact as

h = Re {Ae’k(x—“)} = Re {(A, + iA;) (cos k(x — ct) + isin k(x — ct))}

with complex constant A with Re{A} = A, and Im{A} = A;
with Euler relation e’ = cos ¢ + isin ¢
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gravity wave equation (for f = 0)
oh o

oz & ox2

a particular solution is h(x, t) = sin k(x — ct)

=0

h = Asin k(x — ct) with constant amplitude A is also solution
and also h = Asin(k(x — ct) + ¢) with constant phase ¢

more general wave solution is
h = Asin k(x — ct) 4+ B cos k(x — ct)
or write more compact as
h = Re {Ae’k(x—“)} = Re {(A, + iA;) (cos k(x — ct) + isin k(x — ct))}

= Re{Acosk(x — ct) + iA, sin k(x — ct)}
+Re {iA; cos k(x — ct) — A;sin k(x — ct)}

with complex constant A with Re{A} = A, and Im{A} = A;
with Euler relation e’ = cos ¢ + isin ¢
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gravity wave equation (for f = 0)
oh o

oz & ox2

a particular solution is h(x, t) = sin k(x — ct)

=0

h = Asin k(x — ct) with constant amplitude A is also solution
and also h = Asin(k(x — ct) + ¢) with constant phase ¢

more general wave solution is
h = Asin k(x — ct) 4+ B cos k(x — ct)
or write more compact as
h = Re {Aeik(X_Ct)} = Re {(A, + iA;) (cos k(x — ct) + isin k(x — ct))}
= Re{Acosk(x — ct) + iA, sin k(x — ct)}
+Re {iA; cos k(x — ct) — A;sin k(x — ct)}
= A,cosk(x — ct) — A;sink(x — ct)
with complex constant A with Re{A} = A, and Im{A} = A;
with Euler relation e’ = cos ¢ + isin ¢
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> gravity wave equation (for f = 0) 9*h/0t?> — gHO?h/0x*> =0
> wave solution is given by h = Ae*(*=<t) with complex amplitude A
(Re is often dropped for convenience) as long as ¢ = £/gH
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> gravity wave equation (for f = 0) 9*h/0t?> — gHO?h/0x*> =0

> wave solution is given by h = Ae*(*=<t) with complex amplitude A
(Re is often dropped for convenience) as long as ¢ = ++/gH

> consider h = sin k(x — ct) at t =0 — h = sin kx (black line)
— wavelength is A = 27/k, k is wavenumber

A cAt
-

X=
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Gravity waves without rotation

gravity wave equation (for f = 0) 9?h/0t*> — gHO?*h/dx> =0
wave solution is given by h = Ae*(*=<t) with complex amplitude A
(Re is often dropped for convenience) as long as ¢ = ++/gH
consider h = sin k(x — ct) at t = 0 — h = sin kx (black line)

— wavelength is A = 27/k, k is wavenumber

consider h at t = 0 (black line) and at later time t = At (blue line)
phase where h=0was at t =0 at x =0 but at t = At at x = cAt

A cAt
-

X=

18/ 45
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Gravity waves without rotation

gravity wave equation (for f = 0) 9?h/0t*> — gHO?*h/dx> =0

wave solution is given by h = Ae*(*=<t) with complex amplitude A
(Re is often dropped for convenience) as long as ¢ = ++/gH
consider h = sin k(x — ct) at t = 0 — h = sin kx (black line)

— wavelength is A = 27/k, k is wavenumber

consider h at t = 0 (black line) and at later time t = At (blue line)
phase where h=0was at t =0 at x =0 but at t = At at x = cAt
— ¢ = dx/dt is the velocity at which constant phase propagates

— phase velocity

- >

A cAt
-

x=

18/ 45
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» gravity wave equation (for f = 0) 9?h/0t? — gHO?h/Ox> =0

> wave solution is given by h = Ae*(*=<t) with complex amplitude A
(Re is often dropped for convenience) as long as ¢ = ++/gH

» wavelength A = 27/k with wavenumber k

» phase velocity ¢ with dispersion relation ¢ = +£+/gH

A cAt
-

X=
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» gravity wave equation (for f = 0) 9?h/0t? — gHO?h/Ox> =0

> wave solution is given by h = Ae*(*=<t) with complex amplitude A
(Re is often dropped for convenience) as long as ¢ = ++/gH

» wavelength A = 27/k with wavenumber k

» phase velocity ¢ with dispersion relation ¢ = +£+/gH

> rewrite solution as h = Ae/(*—«1) with frequency w = ck and
w = tk\/gH
> T =27 /w is the period in which a fixed phase pass a fixed point

A cAt
-

- >

X=



Waves Gravity waves without rotation 20/ 45

Waves

Gravity waves without rotation

Plane wave
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> consider the (linearized) layered model with f =0

but now include y dependency — plane wave

Ou Oh Ov P Oh 0Oh <8u 5v>:0

o e m T gy e t a Ty
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> consider the (linearized) layered model with f =0
but now include y dependency — plane wave

ou dh  Ov oh Oh du Ov
at—ﬁ——gax,8t+fd——gay,at+H<aX+ay>—0

» combine momentum and thickness equation to wave equation
ou oh

o gVh, 8t+ V-u=0
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> consider the (linearized) layered model with f =0
but now include y dependency — plane wave
du oh 0Ov oh  0Oh ou  Ov
gt =8 g =g e T <3X+3y>
» combine momentum and thickness equation to wave equation

du o0on o 9h ,
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> consider the (linearized) layered model with f =0

but now include y dependency — plane wave

ou dh  Ov oh Oh du Ov
at—ﬁ——gax,8t+fd——gay,at+H<aX+ay>—0

» combine momentum and thickness equation to wave equation

ou 00h 0 0%h s
V(')t VgV,atatJratVu 0%82 Vh=0
> wave solution h = Aexpi(kix + koy — wt) = Aexpi(k - x — wt)
oh . . 0?h . \2 . ’ )
5 = —iwAexpi(...) 92 = (iw)*Aexpi(...) = —w*Aexpi(...)

with wavenumber vector k = (ki, ko)
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> consider the (linearized) layered model with f =0
but now include y dependency — plane wave

du oh 0Ov oh  0Oh ou  Ov
gt =8 g =g e T <3X+3y>
» combine momentum and thickness equation to wave equation

du 0oh 0 8%h 5
V~E_—Voth, 8t8t+aHV u=0 — 92 gHV-h=20

> wave solution h = Aexpi(kix + koy — wt) = Aexpi(k - x — wt)

on *h
5 = —iwAexpi(...) 92 (iw)

Vh =ikAexpi(..) , V-Vh=i’k-kAexpi(...)=—k>Aexpi(...)
with wavenumber vector k = (ki, ko) and k = |k| = \/k? + k2

2Aexpi(...) = —w?Aexpi(...)
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> consider the (linearized) layered model with f =0

but now include y dependency — plane wave

du oh 0Ov oh  0Oh ou  Ov

gt =8 g =g e T <3X+3y>
» combine momentum and thickness equation to wave equation

du 0oh 0 8%h 5
V~E_—Voth, 8t8t+aHV u=0 — 92 gHV-h=20

> wave solution h = Aexpi(kix + koy — wt) = Aexpi(k - x — wt)

on *h
5 = —iwAexpi(...) 92 (iw)

Vh =ikAexpi(..) , V-Vh=i’k-kAexpi(...)=—k>Aexpi(...)
with wavenumber vector k = (ki, ko) and k = |k| = \/k? + k2
» this works as long as

—w?expi(..) + k’gHexpi(.) =0 — w?=k’gH — w=+k\/gH

2Aexpi(...) = —w?Aexpi(...)

which is still the dispersion relation for a gravity wave (for f = 0)
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> plane gravity wave (for f = 0) is given by h = Aexpi(k - x — wt)

» wavenumber vector k gives direction of phase propagation




Waves

Gravity waves without rotation

> plane gravity wave (for f = 0) is given by h = Aexpi(k - x — wt)
» wavenumber vector k gives direction of phase propagation

> zonal and meridional wave length A, A, and "real” wavelength A

Me=2m/ky, Ay =2m/ky , A=2m/k =2m/\/ K} + K2

but note that X # /A2 + 2

22/ 45
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Gravity waves without rotation

> plane gravity wave (for f = 0) is given by h = Aexpi(k - x — wt)
» phase velocity ¢ with dispersion relation ¢ = ++/gH or w = +k/gH

Ax

23/ 45
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Gravity waves without rotation 23/ 45

> plane gravity wave (for f = 0) is given by h = Aexpi(k - x — wt)
» phase velocity ¢ with dispersion relation ¢ = ++/gH or w = +k/gH
» phase propagates from t = 0 to t = At the distance As = cAt

Ax
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Gravity waves without rotation 23/ 45

plane gravity wave (for f = 0) is given by h = Aexpi(k - x — wt)
phase velocity ¢ with dispersion relation ¢ = ++/gH or w = +k+/gH
phase propagates from t = 0 to t = At the distance As = cAt
along x-axis the distance Ax = ¢, At = Atw/ky — & = w/k
along y-axis the distance Ay = ¢, At = Atw/ky — ¢, = w/k>

but note that ¢ # ,/c2 + ¢2

Ax
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Waves

Gravity waves without rotation

Two waves
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» add two waves with different k and w but same amplitude

h = Acos(k-x—wt)+ Acos(k’ -x —w't)

with w = |k|v/gH = w(k) and w’ = |k'|\/gH = w(k')
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» add two waves with different k and w but same amplitude
h = Acos(k-x—wt)+ Acos(k’ -x —w't)

= 2A cos K —k x—w/_wt cos K+ k x—w/+wt
B 2 2 2 2

with w = |k|/gH = w(k) and w’ = |k'|v/gH = w(k’)




Waves

Gravity waves without rotation 25/ 45

add two waves with different k and w but same amplitude

h = Acos(k-x—wt)+ Acos(k’ -x —w't)

= 2A cos K —k x—w/_wt cos K+ k x—w/+wt
B 2 2 2 2
with w = |k|/gH = w(k) and w’ = |k'|v/gH = w(k’)
for similar wave numbers k" = k + Ak with small Ak
ow ow

! _— e R —_— ..
w(k') = w(k+Ak)_w(k)+aklAkX+ak2Aky+




Waves

Gravity waves without rotation

» add two waves with different k and w but same amplitude

h = Acos(k-x—wt)+ Acos(k’ -x —w't)
l_ r_ /
= 2Acos(k k-x—w wt)cos(k;—kw—

w 4w

2 2

with w = |k|v/gH = w(k) and w’ = |k'|\/gH = w(k')

> for similar wave numbers k' = k + Ak with small Ak

w(k")

with the

ow ow

Oky Oka
= w(k)+cg-Ak+---

group velocity ¢, = (g—k“’l, g—;;) = Ow/0k

2

w(k + Ak) = w(k) + 7 —Ake + — Ak, +---

25/ 45

)
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Gravity waves without rotation 25/ 45

» add two waves with different k and w but same amplitude

h = Acos(k-x—wt)+ Acos(k’ -x —w't)

= 2A cos K —k x—w/_wt cos K+ k x—w/+wt
B 2 2 2 2

with w = |k|v/gH = w(k) and w’ = |k'|\/gH = w(k')

> for similar wave numbers k' = k + Ak with small Ak

w(k")

with the

ow Ow

= wk)+cg - Dk+- — wk')—wk)=~cy Ak

group velocity ¢, = (g—k“’l, g—;;) = Ow/0k
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Gravity waves without rotation 25/ 45

» add two waves with different k and w but same amplitude

h = Acos(k-x—wt)+ Acos(k’ -x —w't)

= 2A cos K —k x—w/_wt cos K+ k x—w/+wt
B 2 2 2 2

with w = |k|/gH = w(k) and w’ = |k'|v/gH = w(k’)

> for similar wave numbers k' = k + Ak with small Ak

w(k")

with the

h

ow Ow

= wk)+cg - Dk+- — wk')—wk)=~cy Ak

group velocity ¢, = (g—k“’l, g—;;) = Ow/0k

Ak cg - Ak
~ 2Acos(2-x— >

t) cos (k- x — wt)
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Gravity waves without rotation 25/ 45

add two waves with different k and w but same amplitude
h = Acos(k-x—wt)+ Acos(k’ -x —w't)

= 2A cos K —k x—w/_wt cos K+ k x—w/+wt
B 2 2 2 2
with w = |k|/gH = w(k) and w’ = |k'|v/gH = w(k’)
for similar wave numbers k" = k + Ak with small Ak
ow ow
k+ Ak) = w(k — Ak, + —ANk, + -
w(k + Ak) w()+ak1 X+ak2 v+
= wk)+cg - Dk+- — wk')—wk)=~cy Ak

w(k")

with the group velocity ¢, = (g—k“’l, g—;;) = Ow/0k

Ak - Ak
h =~ 2Acos(-x—cg2

> t) cos (k- x — wt)

>
Q

2Acos <A2k Sx = cgt]> cos (k - x — wt)

amplitude modulation with speed ¢z and wave length Ak
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» add two waves with different k and w but same amplitude
h = Acos(k-x—wt)+ Acos(k’ - x —w't)
h

Q

2Acos <A2k Sx = cgt]> cos (k - x — wt)

with the wavenumber difference Ak = k' — k
and the group velocity ¢, = (g—j:i, g—z) = Ow/0k

» amplitude modulation with speed ¢, and wave length Ak

MNNNANNAAANANNAANNN

> cg is the speed at which the amplitudes (energy) propagates
> while ¢ is the propagation speed of the phase (in the direction k)

> both are in general different and different from particle velocity



Waves Gravity waves with rotation 27/ 45

Waves

Gravity waves with rotation
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> consider the (linearized, D/Dt — 9/0t) layered model with £ 0

u . __0h AR
ot VT T8ax 0 e TMT T8y

Oh (20 vy
ot dx  dy N



Waves Gravity waves with rotation 28/ 45

> consider the (linearized, D/Dt — 9/0t) layered model with £ 0

@—fv——% @—H‘u——%
ot VT T8ax 0 e TMT T8y
oh ou Ov
JR— H — — =
ot <8x + ay) 0
> take divergence of mom. equation, i.e. 9(1.eqn)/0x + 0(2.eqn)/dy
ddu 0 p *h

g(l-eqn) : aa—g( v) = —8552
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> consider the (linearized, D/Dt — 9/0t) layered model with £ 0

@—fv——% @—H‘u——%
ot VT T8ax 0 e TMT T8y
oh ou Ov
> take divergence of mom. equation, i.e. 9(1.eqn)/0x + 0(2.eqn)/dy
0 0ou 0 0%h
o0v 0 d%h

0
@(2-“1”) - &Fy+@( u) —gaTﬂ
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> consider the (linearized, D/Dt — 9/0t) layered model with £ 0

@—fv——% @—H‘u——%
ot VT T8ax 0 e TMT T8y
Oh ou Ov
> take divergence of mom. equation, i.e. 9(1.eqn)/0x + 0(2.eqn)/dy
ddu 0 0%h
0 o0v 0 d%h
@(2-“1”) : &Fy+@( u) = —gaTﬂ
add both
0 0 0 B »
aﬁ*a(fv)+afy(fu) = —gVh

with £ = du/dx + Ov/dy
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> consider the (linearized, D/Dt — 9/0t) layered model with £ 0

@—fv——% @—H‘u——%
ot VT T8ax 0 e TMT T8y
oh ou Ov
> take divergence of mom. equation, i.e. 9(1.eqn)/0x + 0(2.eqn)/dy
0ou 0 0%h
0 o0v 0 d%h
@(2-“1”) " otoy + @( u) = —gaTﬂ
add both
0 0 0 B 2
aﬁ*a(fv)+afy(fu) = —gVh
0 v Ou 5
Te (YY) = _gvh
8t§ <8X 8y) &v

with £ = du/dx + Ov/dy and for f = const
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> consider the (linearized, D/Dt — 9/0t) layered model with  #£ 0
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> consider the (linearized, D/Dt — 9/0t) layered model with  #£ 0

@ffvffg% @+f*fg—h
ot Ox ’ ot 0
ot ox 0

> take curl of mom. equation, i.e. 9(2.eqn)/0x — 9(1.eqn)/dy

0 00ov 0 0%h
a(Q.eqn) : aa—l—a(fu) = _gaxay




Waves

> consider the (linearized, D/Dt — 9/0t) layered model with  #£ 0

ou
Effv —g—
oh ou

> take curl of mom. equation, i.e. 9(2.eqn)/0x — 9(1.eqn)/dy

Ox

dy

Gravity waves with rotation

0 (2.eqn) :

0 (1.eqn) :

oo
Eax ot £
ov

ay) °
Qv 0 gy = 0%h
axot " ox T TEhxay
90u_ 9 gy = 0%h
ayot oy "l T “€axay

29/ 45
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> consider the (linearized, D/Dt — 9/0t) layered model with  #£ 0

> take curl of mom. equation, i.e. 9(2.eqn)/0x — 9(1.eqn)/dy

0 0 Ov 0 9%h
—(2. D —— 4+ —(f = —
ax (2 ¢ 5 gr T ax ) & oxdy
0 0 Ou 0 9%h
subtract both
0 0 0

with { = dv/0x — du/dy
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> consider the (linearized, D/Dt — 9/0t) layered model with  #£ 0

> take curl of mom. equation, i.e. 9(2.eqn)/0x — 9(1.eqn)/dy

P 9ov 8 92h
9 eqn) . LML Dy =

ax2ean) = 5rar T gk () & oxdy
9 90 o 92h
8y(l.eqn) S oy a(fv) = —gaxay

subtract both

0 0 0

0 ou Ov
s (5 5y) =

with { = dv/0x — Ju/0y and for f = const

Il
o
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» thickness, curl and divergence for f = const

Oh du Ov
at+H(aX+ay) -0
a¢ ou  Ov B
('3t+f(8x+8y> =0
85 5'V 5‘u - . 2

with ¢ = dv/0x — du/0y and & = Qu/Ix + Ov /Dy
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» thickness, curl and divergence for f = const

oh ou Ov
m*”(m*a) =0

a¢ ou  Ov B
m*%w*w)o

85 5'V 5‘u - . 2
m%mw)_ gv*h

with ¢ = dv/0x — du/0y and & = Qu/Ix + Ov /Dy
» time differentiate divergence and replace with curl and thickness eq.

825 aC B 50h
a2 ar T V&
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» thickness, curl and divergence for f = const

oh ou Ov
m*”(m*ay) =0

a¢ ou  Ov B
at+f(ax+ay> =0

85 5'V 5‘u - . 2
at”<axay) = —&Vh

with ¢ = dv/0x — du/0y and & = Qu/Ix + Ov /Dy

» time differentiate divergence and replace with curl and thickness eq.

o¢oC ,0h
a2 far T &V
82

Sal e = gV
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» thickness, curl and divergence for f = const

oh ou Ov
at+H(aX+a) =0

a¢ ou  Ov B
('3t+f(8x+8y> =0

85 5'V 5‘u _ 2
5 (o ay) = &7

with ¢ = dv/0x — du/0y and & = Qu/Ix + Ov /Dy
» time differentiate divergence and replace with curl and thickness eq.
0%¢ ¢ 20h
c’)t2 o T 8V %
ﬁf + fzf = gHsz
0%¢

8t2+f2( E—(gH/f)V?) = 0
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Gravity waves with rotation

» thickness, curl and divergence for f = const

oh ou Ov
3t+H(5X+5) =0

oC du  Ov B
8t+f(8x+8y> =0

193 v Ou 5
5 (o ay) = &7

with ¢ = dv/0x — du/0y and & = Qu/Ix + Ov /Dy

» time differentiate divergence and replace with curl and thickness eq.

¢ o¢ 20h
c’)t2 a ~ &V
ﬁf + fzf gHsz
825 2 2 2
o0 T (6 (gH/F)V7¢) 0
2
g § + 2 (£ - R°V%) 0

with Rossby radius R = /gH/|f]|

30/ 45
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» combined thickness, curl and divergence eq. for f = const

PE ol 6 206N _
mz”(f—Raxz‘Rayz) -

with Rossby radius R = v/gH/|f|
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» combined thickness, curl and divergence eq. for f = const

o 0% 0%\
E (f R ™ Rayz) =

with Rossby radius R = v/gH/|f|

» look for wave solutions

E(x,y, t) =Coexpi(kix + koy — wt)

with complex constant &,
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» combined thickness, curl and divergence eq. for f = const

PE ol 6 206N _
mz”(f—Raxz‘Rayz) -

with Rossby radius R = v/gH/|f|

» look for wave solutions
§(x,y,t) = Soexpi(kix + kay — wt)
with complex constant & which yields

(—iw)?&oexp(...) + F2 (1 — R*(iki)® — R*(iko)?) &oexp(...) = 0
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» combined thickness, curl and divergence eq. for f = const

PE ol 6 206N _
mz”(f—Raxz‘Rayz) -

with Rossby radius R = v/gH/|f|

» look for wave solutions
§(x,y,t) = Soexpi(kix + kay — wt)
with complex constant & which yields

(—iw)?&oexp(...) + £2 (1 — R*(iki)? — R*(iko)?) Lo exp(...) =
—w?+ 2 (14 Rk + R°k3) =

o O



Waves Gravity waves with rotation 31/ 45

» combined thickness, curl and divergence eq. for f = const

PE ol 6 206N _
mz”(f—Raxz‘Rayz) -

with Rossby radius R = v/gH/|f|

» look for wave solutions
§(x,y,t) = Soexpi(kix + kay — wt)
with complex constant & which yields

(—iw)?&oexp(...) + £2 (1 — R*(iki)? — R*(iko)?) Lo exp(...) =
—w?+ 2 (14 Rk + R°k3) =

o O

> this is a (plane wave) solution as long as w satisfies
w =/ (1+ R?k?)

with k2 = |k|? = k2 + K2
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)

w==%F2(1+ R?k?) , c==£+/f?(1/k>+ R?)

frequency [cycles per day] phase velocity [m/s]
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|
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Waves Gravity waves with rotation

> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w=4f2(1+R?k?) |, c==4+/f2(1/k?+ R?)

> different phase velocity ¢ = w/k for different k — dispersive wave

frequency [cycles per day] phase velocity [m/s]

12, 5 T ™
| |
| |
L I 4 I
10 | ar | B
|
d |
sl ]
I I
. 3 27/ R —, |
| |
6 I 1 !
21/R —1 |
| 2r | b
4 1 1 1
f 1 1
| . |
2 J 1 4 1 \ |
ST TSR A - — 1
| VgH |
L L L L L il L L L L L L L il L L
%.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 %.0 0.1 0.2 03 04 05 06 0.7 038

k [1/km] k [1/km]
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w=4f2(1+R?k?) |, c==4+/f2(1/k?+ R?)

> different phase velocity ¢ = w/k for different k — dispersive wave

> short wave limit for A = 27/k < R — R?k?> > 1

w T2® LVFR2K2 = +ky\/gH

frequency [cycles per day] phase velocity [m/s]

12, 5
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10 | ar | B
|
d |
sl
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w=4f2(1+R?k?) |, c==4+/f2(1/k?+ R?)

> different phase velocity ¢ = w/k for different k — dispersive wave

> short wave limit for A = 27/k < R — R?k?> > 1
wR2® LVRR2K2 = +k\/gH , ¢ 2> £\/gH

— (non-dispersive) gravity waves without rotation (black lines)

12 frequency [cycles per day] phase velocity [m/s]

5

10f

IS

]
I
:
2n/R ﬁ:
I
I
I
I
I

N

' Vgl

L L L L L 11 L L L L L L L 11 L L

90 01 02 03 04 05 06 07 08 90 01 02 03 04 05 06 07 08
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Waves Gravity waves with rotation
> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==2/F2(1+R?k?) , c=+/f?>(1/k*+ R?)

> different phase velocity ¢ = w/k for different k — dispersive wave

frequency [cycles per day] phase velocity [m/s]

12, 5
| |
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L l |
10 I a4 I 1
|
d |
8 | |
. 3 21/ R —, J
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==2/F2(1+R?k?) , c=+/f?>(1/k*+ R?)
> different phase velocity ¢ = w/k for different k — dispersive wave

» long wave limit for A = 27/k > R — R?k?> < 1

Rk—0 Rk—0
w = =£f c = +o00

)

frequency [cycles per day] phase velocity [m/s]

12, 5
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L l |
10 I a4 I 1
|
d |
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I 2r I 1
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==2/F2(1+R?k?) , c=+/f?>(1/k*+ R?)

v

different phase velocity ¢ = w/k for different k — dispersive wave

long wave limit for A = 27/k > R — R?k*> < 1
o Rk

v

+o0

)
» these are inertial oscillations which also result from

Ou/ot—fv =0, Ov/Ot+fu=0

frequency [cycles per day] phase velocity [m/s]
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» trajectories of surface drifter — inertial oscillations

49.0 T

Latitude
>
~
(4]

4651

sl . . l A .
-143 -142 -141 -140 -139 -138 -137
Longitude

from d’'Asaro et al 1995



Waves Gravity waves with rotation

> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)

w=+/F (1 + R2K2)

frequency [cycles per day] phase velocity [m/s]

12, T 5 T T
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10 I ar I B
|
8l 1 i 1
: 3k 27T/R$: i
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6r | 1 !
21/ R —si i
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| . |
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==£+/f2(1+ R?k?)
> group velocity ¢, = Ow/0k is given by

1 (f2 2,.2\\~1/2 2 50
Cg:(ﬁw/akl)_i<i(f (1+ R2K?)) fR2k1>:ng
2

—-1/2
3&]/6[(2 (f2 (1 + R2k2)) / f2R22k2 w
12 frequency [cycles per day] i phase velocity [m/s]
I I
1o : at :
I
8l 1 1
: 3 2r/R $:
6 : |
21/ R —si A i
I I
ar 1 1
f | |
I 1} |
2 7 b N |
! VgH !
L L L L L il L L L L L L L il L L
%.0 0.1 0.2 03 04 05 0.6 0.7 0.8 8.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8
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Waves Gravity waves with rotation
> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==£+/f2(1+ R?k?)

> group velocity is given by ¢, = (gH/w)k (red line for f # 0)

frequency [cycles per day] phase velocity [m/s]

12 5
| |
| |
| |
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|
8 d |
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> gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==£+/f2(1+ R?k?)
> group velocity is given by ¢, = (gH/w)k (red line for f # 0)
> short wave limit for A < R
w SR i /gH = ¢ "= 1 /gHk/k = ck/k

frequency [cycles per day] phase velocity [m/s]
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Waves

v

Gravity waves with rotation

gravity wave dispersion relation (f # 0 in blue, f = 0 in black)
w==£+/f2(1+ R?k?)

group velocity is given by ¢, = (gH/w)k (red line for f # 0)

short wave limit for A < R

w SR i /gH = ¢ "= 1 /gHk/k = ck/k

long wave limit for A > R

AS>R AS>R

w'=+f = ¢z =0
12 frequency [cycles per day] N phase velocity [m/s]
| |
10 . 4 |
I
8 I I
| 3 21/R 5,
6 | |
21/R —si |
I 2 I
4 | !
f | |
) o 1 :
P AN A [ |
| VgH !
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Waves

Kelvin waves
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> consider again the (linearized) layered model with f # 0

@—fv—— h @—i-fu—— h @—i- @—i—@ =0
ot T80k ar YT T8y e ax " oy)

> suppose we have a solid boundary at y =0 — v|,— =0
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> consider again the (linearized) layered model with f # 0

@—fv—— h @—i-fu—— h @—i- @—i—@ =0
ot T80k ar YT T8y e ax " oy)

> suppose we have a solid boundary at y =0 — v|,— =0

> look for solutions with v = 0 everywhere

b O oh o
ot Cox T T8, ar T Max T



Waves

Kelvin waves

consider again the (linearized) layered model with f # 0

@—fv—— h @—i-fu—— h @—i- @—i—@ =0
ot T80k ar YT T8y e ax " oy)

suppose we have a solid boundary at y =0 — v|,— =0

look for solutions with v = 0 everywhere

b O oh o
ot Cox T T8, ar T Max T

combining the first and the last equation yields wave equation

d%h d%h
or &g =0

with solution h = Aexp i(kx — wt), but now A = A(y)
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Waves

Kelvin waves
consider again the (linearized) layered model with f # 0
Qu_ o Oh v 0h D (0u ovY g
gt VT Eexar T MT 88y Be ax " ay)

suppose we have a solid boundary at y =0 — v|,— =0

look for solutions with v = 0 everywhere

b O oh o
ot Cox T T8, ar T Max T

combining the first and the last equation yields wave equation
0?h 0%h
- —gH—=0
ot? Ox?

with solution h = Aexp i(kx — wt), but now A = A(y)

gravity wave (f = 0) in x with phase velocity ¢ = £+/gH

for y dependency of A we consider the second equation

38/ 45



Waves Kelvin waves 39/ 45

» solid boundary at y = 0, look for solutions with v = 0 everywhere

ou__,0h Oh_ ,ou_ . Oh 0%
ot~ &ox ot ax oz 8o T

with solution h = A(y) exp i(kx — wt) and w = +k/gH

» for y dependency of A we consider the second equation
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Kelvin waves

solid boundary at y = 0, look for solutions with v = 0 everywhere

ou__,0h Oh_ ,ou_ . Oh 0%
ot~ &ox ot ax oz 8o T

with solution h = A(y) exp i(kx — wt) and w = +k/gH
for y dependency of A we consider the second equation

assume wave u = U(y) exp i(kx — wt) with amplitude U from

Ou Oh , . . . kA
5= 89 7 T iwUexpi(...) = —gikAexpi(...) — U= g
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Waves

Kelvin waves

solid boundary at y = 0, look for solutions with v = 0 everywhere

ou oh Oh  Ou 92h 92h
9t Coxc o tHax =0 7 a2 8

with solution h = A(y) exp i(kx — wt) and w = +k/gH

=0

for y dependency of A we consider the second equation
assume wave u = U(y) exp i(kx — wt) with amplitude U from

ou 6h — —iwUexpi(...) = —gikAexpi(...) —» U= gﬁ

ot 8x

using this in the second equation yields
fu=—g- = (f/)A=—A — A=A Y/ = Age/R

with ¢ = w/k = £+/gH and with Rossby radius R = /gH/|f|
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Waves

Kelvin waves
solid boundary at y = 0, look for solutions with v = 0 everywhere
ou Oh  0Oh ou 0%h 0%h
= gl L+ HZ= = =
ot~ Cox ot T Tax =0 7 g &g =0
with solution h = A(y) exp i(kx — wt) and w = +k/gH
for y dependency of A we consider the second equation
assume wave u = U(y) exp i(kx — wt) with amplitude U from
Ju 6h kA

ik 8x — —iwUexpi(...) = —gikAexpi(...) —» U= gf

using this in the second equation yields
fu=—g- = (f/)A=—A — A=A Y/ = Age/R

with ¢ = w/k = £+/gH and with Rossby radius R = /gH/|f|
only the decaying solution in y is reasonable

Kelvin wave
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> Kelvin wave along solid boundary at y =0
h= Ape™/Rexpi(kx — wt) , u = (gAo/c)et”/Rexpi(kx —wt) , v=0
and w = +k+/gH and with Rossby radius R = \/gH/|f|

> only the decaying solution in y is reasonable

> works in the same way for boundary along x or any other direction

12 frequency [cycles per day] phase velocity [m/s]
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» tidal Kelvin wave in the North Sea
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from Klett (2014)
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> consider the (linearized) layered model with f = const

Ou o g OV g gOh Oh L y(ou OV
at VT 8ax ar TMT TEGy ar ox "ay)
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> consider the (linearized) layered model with f = const

0 o g2 gy g0 O (0 OV
at VT 8ax ar TMT TEGy ar ox "ay)
> (linearized, D/Dt — 9/9t) potential vorticity equation
oq _(+f f
55=0 . q= 2~ (- phtf

> fin q for f = const does not matter — g = ¢ — (f/H)h
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> consider the (linearized) layered model with f = const
R T L LA T Ly i A
at VT 8ax ar TMT TEGy ar ox "ay)
> (linearized, D/Dt — 9/9t) potential vorticity equation
dq _CHf f
5 = 0, g= S ¢ ﬁh +f

v

fin g for f = const does not matter — g = ¢ — (f/H)h

v

consider as initial condition u = 0 and h a step function such that

hg, ifx<0 —fho/H, if x<0
hlt=0 = . — qo = Q‘t:O = .
—hy, ifx>0 fho/H, ifx>0



Waves

Geostrophic adjustment

consider the (linearized) layered model with f = const

du__0h ov_ . oh 9h (0
at VT 8ax ar TMT TEGy ar Ox
(linearized, D/Dt — 0/0t) potential vorticity equation
oq _(+f f
55=0 . q= 2~ (- phtf

fin g for f = const does not matter — g = ¢ — (f/H)h

v
dy

43/ 45

) -0

consider as initial condition u = 0 and h a step function such that

ho, if x <0 —fho/H,
h -0 = — = _0 =
le=o {—ho, x>0 0790 { fho/ H,

using g(t) = qo steady state solution (t — o) is given by

Voo = —ahm fuee = — —ahm
o T8 g0 e =78 dy
g@zhoo g@QhOO f
= — — — *h ==
T o T fap H T

— q

if x<0
if x>0

— V?hs — R™2hy, = (f/g)qo with Rossby radius R = +/gH/|f|
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> steady state solution (t — oo) is given by

—R~2hy, ifx<0

V2heo — R ?hse = (f —
(/&) { R2hy, if x>0

with Rossby radius R = v/gH/|f|
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> steady state solution (t — oo) is given by

—R~2hy, ifx<0

V2heo — R ?hse = (f —
(/&) { R2hy, if x>0

with Rossby radius R = v/gH/|f|

» solution of hy, is given by

ho(1 —e/F), ifx<0
h(X)OO = —x/R :
—ho(l—e ), ifx>0
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> steady state solution (t — oo) is given by

—R~2hy, ifx<0

V2heo — R ?hse = (f —
(/&) { R2hy, if x>0

with Rossby radius R = v/gH/|f|
» solution of hy, is given by

ho(1 —e/F), ifx<0
h(X)OO = —x/R :
—ho(l—e ), ifx>0

» since for x < 0 h,, = —hy/Re*/R and W, = —hy/R? /R and

R — R72hy = —hgR™2e*/R — R72h(1 — &/R) = —R2hy



Waves

Geostrophic adjustment

steady state solution (t — o0) is given by

—R~2hy, ifx<0

V2heo — R ?hse = (f —
(/&) { R2hy, if x>0

with Rossby radius R = v/gH/|f|

solution of h, is given by

ho(1 —e/F), ifx<0
h(X)OO = —x/R :
—ho(l—e ), ifx>0

since for x < 0 hl, = —ho/R /R and n = —ho/R? /R and
h! — R 2hy = —hgR™2e/R — R72hy(1 — e*/R) = —R™2hy
since for x > 0 hl, = —ho/R e—*/R and . = ho/R2 e—/R and

R — R™2hy = hyR™2e™/R 4 R72hy(1 — e™*/R) = R™2h,
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» initial and steady state solution of h are given by
Moo = ho, ifx<0 e = ho(1 — e/F), ifx<0
0T ) —he, ifx>0 7 T )\ —h(1—e¥/R), ifx>0

with Rossby radius R = v/gH/|f|

) velocity v [m/s] at t=0 and oo (--)

1 height h [m] at t=0 and oo (--)
5 . : r .
L Rossby radius
<—‘/>
Of==—— —
—1}f AN , i
\ ’
\ ’
\
o o |
\ 1
\
—3F \ ’I Bl
\ 1
—4 “1 4
T — 0 50 100 -100  -50 0 50 100
[km]
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» initial and steady state solution of h are given by

ho(]. — E‘X/R)7

hy, ifx<0

h _n =
le=o0 —ho, ifx>0

with Rossby radius R = v/gH/|f|

5 hloo:

—ho(l — efX/R),

if x<0
if x>0

> velocities from fvy, = g0hs/Ox and fus, = —gOhs, /Oy

Uso =0, Voo = (g/f)

1s height h [m] at t=0 and oo (--)

—ho/Re*/R,
—ho/Re=*/R,

if x <0 h
Wx <O _ _8M —x/r

ifx>0

) velocity v [m/s] at t=0 and oo (--)

R

Rossby radius

=15

+—>
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N ’
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\
_2t . /, d
A
\
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Y
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