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11 – Waves and Instabilities

Waves
Layered models
Gravity waves without rotation

One-dimensional wave
Plane wave
Two waves

Gravity waves with rotation
Kelvin waves
Geostrophic adjustment
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I consider a single layer system in hydrostatic approximation

I assume ρ = const and no vertical shear ∂u/∂z = ∂v/∂z = 0

z=−H

ρ =const u,v,w, and p

z=0 η

x

y

I with sea level at z = η and the bottom at z = −H
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I consider a single layer system in hydrostatic approximation

∂u

∂t
+ u ·∇u − fv = −1

ρ

∂p

∂x

∂v

∂t
+ u ·∇v + fu = −1

ρ

∂p

∂y

∂p

∂z
= −gρ

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

I assume ρ = const and no vertical shear ∂u/∂z = ∂v/∂z = 0

I now vertically integrate continuity equation from bottom to top∫ η

−H

(
∂u

∂x
+
∂v

∂y

)
dz +

∫ η

−H

∂w

∂z
dz = 0

(H + η)

(
∂u

∂x
+
∂v

∂y

)
+ w |η − w |−H = 0

with sea level at z = η and the bottom at z = −H
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I assume ρ = const and no vertical shear ∂u/∂z = ∂v/∂z = 0

I vertically integrate continuity equation from bottom to top

(H + η)

(
∂u

∂x
+
∂v

∂y

)
+ w |η − w |−H = 0

I now use kinematic boundary conditions

w−H = 0 , w |η =
∂η

∂t
+ u|η

∂η

∂x
+ v |η

∂η

∂y

which means no mass flux through upper and lower boundaries

I this yields

(H + η)

(
∂u

∂x
+
∂v

∂y

)
+
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= 0

h

(
∂u

∂x
+
∂v

∂y

)
+
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= 0

∂h

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0

which becomes a layer thickness equation for h = H + η
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I assume ρ = const and integrate hydrostatic balance from z to top

∂p

∂z
= −gρ∫ η

z

∂p

∂z
dz = p|η − p|z = −gρ

∫ η

z

dz = −gρ(η − z)

p = p|η − gρ(z − η)

∇p = gρ∇η = gρ∇h

with layer thickness h = η + H

I momentum equation becomes

∂u

∂t
+ u ·∇u − fv = −1

ρ

∂p

∂x
= −g ∂h

∂x

∂v

∂t
+ u ·∇v + fu = −1

ρ

∂p

∂y
= −g ∂h

∂y

since h(x , y , t) and ∂u/∂z = ∂v/∂z = 0 equations are now 2-D
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I single layer system in hydrostatic approximation

∂u

∂t
+ u ·∇u − fv = −g ∂h

∂x
∂v

∂t
+ u ·∇v + fu = −g ∂h

∂y

∂h

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0

I neglecting momentum advection for simplicity

and assuming H � η in h = H + η →∇ · (uh) ≈ H∇ · u

∂u

∂t
− fv = −g ∂h

∂x
∂v

∂t
+ fu = −g ∂h

∂y

∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

simple system which contains almost all relevant dynamics
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I two layers with ρ1 = ρ = const and ρ2 = ρ+ ∆ρ = const

I sea surface at z = η and layer interface z = −hi
I assume again no vertical shear ∂u1,2/∂z = ∂v1,2/∂z = 0 in layers

∆+ρ = const

−Hz=

z=−h

1111u v w  and p= const

2 2u v w  and p2 2

ρ

y

x

ηz=0

ρ

i

I pressure gradient in upper layer gρ∇η

I pressure gradient in lower layer −g(ρ+ ∆ρ)∇hi + gρ∇(η + hi )
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I upper layer equations

∂u1
∂t

+ u1 ·∇u1 − fv1 = −g ∂η
∂x

∂v1
∂t

+ u1 ·∇v1 + fu1 = −g ∂η
∂y

∂

∂t
(η + hi ) +

∂

∂x
u1(η + hi ) +

∂

∂y
v1(η + hi ) = 0

I lower layer equations

∂u2
∂t

+ u2 ·∇u2 − fv2 = g
∆ρ

ρ

∂hi
∂x
− g

∂η

∂x

∂v2
∂t

+ u2 ·∇v2 + fu2 = g
∆ρ

ρ

∂hi
∂y
− g

∂η

∂y

∂

∂t
(H − hi ) +

∂

∂x
u2(H − hi ) +

∂

∂y
v2(H − hi ) = 0

∆+ρ = const

−Hz=

z=−h

1111u v w  and p= const

2 2u v w  and p2 2

ρ

y

x

ηz=0

ρ

i
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I assume that lower layer is infinitively deep and motionless

0 = g
∆ρ

ρ
∇hi − g∇η → ∆ρ

ρ
hi − η = const = 0 → η =

∆ρ

ρ
hi

vanishing pressure variations in lower layer

∆+ρ = const

−Hz=

z=−h

1111u v w  and p= const

2

ρ

y

x

ηz=0

i

u = 0 v2ρ = 0
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I assume that lower layer is infinitively deep and motionless

0 = g
∆ρ

ρ
∇hi − g∇η → η =

∆ρ

ρ
hi

vanishing pressure variations in lower layer

I upper layer equations become

∂u1
∂t

+ u1 ·∇u1 − fv1 = −g ′ ∂hi
∂x

∂v1
∂t

+ u1 ·∇v1 + fu1 = −g ′ ∂hi
∂y

∂

∂t
hi +

∂

∂x
(u1hi ) +

∂

∂y
(v1hi ) = 0

with ”reduced gravity” g ′ = g∆ρ/ρ

∆+ρ = const

−Hz=

z=−h

1111u v w  and p= const

2

ρ

y

x

ηz=0

i

u = 0 v2ρ = 0
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I ”barotropic model” and ”baroclinic model”

∂u

∂t
+ u ·∇u − fv = −g ∂h

∂x
,
∂v

∂t
+ u ·∇v + fu = −g ∂h

∂y

∂h

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0

I h is total thickness (”barotropic”) or layer interface hi (”baroclinic”)

I either g = 9.81m/s2 (”barotropic”) or g → g∆ρ/ρ0 (”baroclinic”)

z=−H

ρ =const u,v,w, and p

z=0 η

x

y ∆+ρ = const

−Hz=

z=−h

1111u v w  and p= const

2

ρ

y

x

ηz=0

i

u = 0 v2ρ = 0
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I consider the (linearized) layered model with f = 0

and also set y dependency to zero → v = 0

∂u

∂t
−��fv = −g ∂h

∂x
,
�
��∂v

∂t
+��fu = −

�
��g
∂h

∂y
,
∂h

∂t
+ H

(
∂u

∂x
+

�
��
∂v

∂y

)
= 0

I combine momentum and thickness equation to wave equation

∂

∂x

∂u

∂t
= −g ∂

∂x

∂h

∂x
,
∂

∂t

∂h

∂t
+ H

∂

∂t

∂u

∂x
= 0 → ∂2h

∂t2
− gH

∂2h

∂x2
= 0

I try particular solution h(x , t) = sin k(x − ct)

∂h

∂t
= −kc cos k(x − ct) ,

∂2h

∂t2
= −(kc)2 sin k(x − ct)

∂h

∂x
= k cos k(x − ct) ,

∂2h

∂x2
= −k2 sin k(x − ct)

I this works as long as

−(kc)2 sin(..) + k2gH sin(..) = 0 → c2 = gH → c = ±
√
gH

which is the dispersion relation for a gravity wave (for f = 0)
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I gravity wave equation (for f = 0)

∂2h

∂t2
− gH

∂2h

∂x2
= 0

I a particular solution is h(x , t) = sin k(x − ct)

I h = A sin k(x − ct) with constant amplitude A is also solution

and also h = A sin(k(x − ct) + φ) with constant phase φ

I more general wave solution is

h = A sin k(x − ct) + B cos k(x − ct)

I or write more compact as

h = Re
{
Ae ik(x−ct)

}
= Re {(Ar + iAi ) (cos k(x − ct) + i sin k(x − ct))}

= Re {Ar cos k(x − ct) + iAr sin k(x − ct)}
+Re {iAi cos k(x − ct)− Ai sin k(x − ct)}

= Ar cos k(x − ct)− Ai sin k(x − ct)

with complex constant A with Re{A} = Ar and Im{A} = Ai

with Euler relation e iφ = cosφ+ i sinφ
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I gravity wave equation (for f = 0) ∂2h/∂t2 − gH∂2h/∂x2 = 0

I wave solution is given by h = Ae ik(x−ct) with complex amplitude A

(Re is often dropped for convenience) as long as c = ±
√
gH

I consider h = sin k(x − ct) at t = 0 → h = sin kx (black line)

→ wavelength is λ = 2π/k , k is wavenumber

I consider h at t = 0 (black line) and at later time t = ∆t (blue line)

phase where h = 0 was at t = 0 at x = 0 but at t = ∆t at x = c∆t

→ c = dx/dt is the velocity at which constant phase propagates

→ phase velocity

x

x=0

t∆c

c∆tλ
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I gravity wave equation (for f = 0) ∂2h/∂t2 − gH∂2h/∂x2 = 0

I wave solution is given by h = Ae ik(x−ct) with complex amplitude A

(Re is often dropped for convenience) as long as c = ±
√
gH

I wavelength λ = 2π/k with wavenumber k

I phase velocity c with dispersion relation c = ±
√
gH

I rewrite solution as h = Ae i(kx−ωt) with frequency ω = ck and

ω = ±k
√

gH

I T = 2π/ω is the period in which a fixed phase pass a fixed point

x

x=0

t∆c

c∆tλ
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I consider the (linearized) layered model with f = 0

but now include y dependency → plane wave

∂u

∂t
−��fv = −g ∂h

∂x
,
∂v

∂t
+��fu = −g ∂h

∂y
,
∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

I combine momentum and thickness equation to wave equation

∇ · ∂u
∂t

= −∇ · g∇h ,
∂

∂t

∂h

∂t
+

∂

∂t
H∇ · u = 0 → ∂2h

∂t2
− gH∇2h = 0

I wave solution h = A exp i(k1x + k2y − ωt) = A exp i(k · x − ωt)

∂h

∂t
= −iωA exp i(...) ,

∂2h

∂t2
= (iω)2A exp i(...) = −ω2A exp i(...)

∇h = ikA exp i(...) , ∇ ·∇h = i2k · kA exp i(...) = −k2A exp i(...)

with wavenumber vector k = (k1, k2) and k = |k | =
√
k2
1 + k2

2

I this works as long as

−ω2 exp i(..) + k2gH exp i(..) = 0 → ω2 = k2gH → ω = ±k
√

gH

which is still the dispersion relation for a gravity wave (for f = 0)
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I plane gravity wave (for f = 0) is given by h = A exp i(k · x − ωt)

I wavenumber vector k gives direction of phase propagation

I zonal and meridional wave length λx , λy and ”real” wavelength λ

λx = 2π/k1 , λy = 2π/k2 , λ = 2π/k = 2π/
√
k2
1 + k2

2

but note that λ 6=
√
λ2x + λ2y

y

crest

trough

crest

λ

λ

x

λ

h=0
h=0

h=−A
h=A

h=A

k

y

x

Waves Gravity waves without rotation 18/ 36

I plane gravity wave (for f = 0) is given by h = A exp i(k · x − ωt)

I phase velocity c with dispersion relation c = ±
√
gH or ω = ±k

√
gH

I phase propagates from t = 0 to t = ∆t the distance ∆s = c∆t

I along x-axis the distance ∆x = cx∆t = ∆t ω/k1 → cx = ω/k1

along y-axis the distance ∆y = cy∆t = ∆t ω/k2 → cy = ω/k2

but note that c 6=
√
c2x + c2y

x

crest at t=0

crest at t=

y

x

∆
t

s∆

∆

∆y
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I add two waves with different k and ω but same amplitude

h = A cos(k · x − ωt) + A cos(k ′ · x − ω′t)

= 2A cos

(
k ′ − k

2
· x − ω′ − ω

2
t

)
cos

(
k ′ + k

2
· x − ω′ + ω

2
t

)
with ω = |k |

√
gH = ω(k) and ω′ = |k ′|

√
gH = ω(k ′)

I for similar wave numbers k ′ = k + ∆k with small ∆k

ω(k ′) = ω(k + ∆k) = ω(k) +
∂ω

∂k1
∆kx +

∂ω

∂k2
∆ky + · · ·

= ω(k) + cg ·∆k + · · · → ω(k ′)− ω(k) ≈ cg ·∆k

with the group velocity cg =
(
∂ω
∂k1
, ∂ω∂k2

)
= ∂ω/∂k

h ≈ 2A cos

(
∆k
2
· x − cg ·∆k

2
t

)
cos (k · x − ωt)

h ≈ 2A cos

(
∆k
2
· [x − cg t]

)
cos (k · x − ωt)

I amplitude modulation with speed cg and wave length ∆k
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I add two waves with different k and ω but same amplitude

h = A cos(k · x − ωt) + A cos(k ′ · x − ω′t)

h ≈ 2A cos

(
∆k
2
· [x − cg t]

)
cos (k · x − ωt)

with the wavenumber difference ∆k = k ′ − k

and the group velocity cg =
(
∂ω
∂k1
, ∂ω∂k2

)
= ∂ω/∂k

I amplitude modulation with speed cg and wave length ∆k

I cg is the speed at which the amplitudes (energy) propagates

I while c is the propagation speed of the phase (in the direction k)

I both are in general different and different from particle velocity
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I consider the (linearized, D/Dt → ∂/∂t) layered model with f 6= 0

∂u

∂t
− fv = −g ∂h

∂x
,

∂v

∂t
+ fu = −g ∂h

∂y

∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

I take divergence of mom. equation, i.e. ∂(1.eqn)/∂x + ∂(2.eqn)/∂y

∂

∂x
(1.eqn) :

∂

∂t

∂u

∂x
− ∂

∂x
(fv) = −g ∂

2h

∂x2

∂

∂y
(2.eqn) :

∂

∂t

∂v

∂y
+

∂

∂y
(fu) = −g ∂

2h

∂y2

add both

∂

∂t
ξ − ∂

∂x
(fv) +

∂

∂y
(fu) = −g∇2h

∂

∂t
ξ − f

(
∂v

∂x
− ∂u

∂y

)
= −g∇2h

with ξ = ∂u/∂x + ∂v/∂y and for f = const
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I consider the (linearized, D/Dt → ∂/∂t) layered model with f 6= 0

∂u

∂t
− fv = −g ∂h

∂x
,

∂v

∂t
+ fu = −g ∂h

∂y

∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

I take curl of mom. equation, i.e. ∂(2.eqn)/∂x − ∂(1.eqn)/∂y

∂

∂x
(2.eqn) :

∂

∂x

∂v

∂t
+

∂

∂x
(fu) = −g ∂2h

∂x∂y

∂

∂y
(1.eqn) :

∂

∂y

∂u

∂t
− ∂

∂y
(fv) = −g ∂2h

∂x∂y

subtract both

∂

∂t
ζ +

∂

∂x
(fu) +

∂

∂y
(fv) = 0

∂

∂t
ζ − f

(
∂u

∂x
+
∂v

∂y

)
= 0

with ζ = ∂v/∂x − ∂u/∂y and for f = const
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I thickness, curl and divergence for f = const

∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

∂ζ

∂t
+ f

(
∂u

∂x
+
∂v

∂y

)
= 0

∂ξ

∂t
− f

(
∂v

∂x
− ∂u

∂y

)
= −g∇2h

with ζ = ∂v/∂x − ∂u/∂y and ξ = ∂u/∂x + ∂v/∂y

I time differentiate divergence and replace with curl and thickness eq.

∂2ξ

∂t2
− f

∂ζ

∂t
= −g∇2 ∂h

∂t
∂2

∂t2
ξ + f 2ξ = gH∇2ξ

∂2ξ

∂t2
+ f 2

(
ξ − (gH/f 2)∇2ξ

)
= 0

∂2ξ

∂t2
+ f 2

(
ξ − R2∇2ξ

)
= 0

with Rossby radius R =
√
gH/|f |

Waves Gravity waves with rotation 24/ 36

I combined thickness, curl and divergence eq. for f = const

∂2ξ

∂t2
+ f 2

(
ξ − R2 ∂

2ξ

∂x2
− R2 ∂

2ξ

∂y2

)
= 0

with Rossby radius R =
√
gH/|f |

I look for wave solutions

ξ(x , y , t) = ξ0 exp i(k1x + k2y − ωt)

with complex constant ξ0 which yields

(−iω)2ξ0 exp(...) + f 2
(
1− R2(ik1)2 − R2(ik2)2

)
ξ0 exp(...) = 0

− ω2 + f 2
(
1 + R2k2

1 + R2k2
2

)
= 0

I this is a (plane wave) solution as long as ω satisfies

ω = ±
√

f 2 (1 + R2k2)

with k2 = |k |2 = k2
1 + k2

2
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I gravity wave dispersion relation (f 6= 0 in blue, f = 0 in black)

ω = ±
√

f 2 (1 + R2k2) , c = ±
√
f 2 (1/k2 + R2)

I different phase velocity c = ω/k for different k → dispersive wave

I short wave limit for λ = 2π/k � R → R2k2 � 1

ω
Rk→∞

= ±
√
f 2R2k2 = ±k

√
gH , c

Rk→∞
= ±

√
gH

→ (non-dispersive) gravity waves without rotation (black lines)
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I gravity wave dispersion relation (f 6= 0 in blue, f = 0 in black)

ω = ±
√

f 2 (1 + R2k2) , c = ±
√

f 2 (1/k2 + R2)

I different phase velocity c = ω/k for different k → dispersive wave

I long wave limit for λ = 2π/k � R → R2k2 � 1

ω
Rk→0

= ±f , c
Rk→0

= ±∞

I these are inertial oscillations which also result from

∂u/∂t − fv = 0 , ∂v/∂t + fu = 0
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0

2

4

6

8

10

12

2π/R

f

frequency [cycles per day]
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I trajectories of surface drifter → inertial oscillations

from d’Asaro et al 1995
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I gravity wave dispersion relation (f 6= 0 in blue, f = 0 in black)

ω = ±
√

f 2 (1 + R2k2)

I group velocity cg = ∂ω/∂k is given by

cg =

(
∂ω/∂k1
∂ω/∂k2

)
= ±

(
1
2

(
f 2
(
1 + R2k2

))−1/2
f 2R22k1

1
2

(
f 2
(
1 + R2k2

))−1/2
f 2R22k2

)
=

gH

ω
k
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Waves Gravity waves with rotation 29/ 36

I gravity wave dispersion relation (f 6= 0 in blue, f = 0 in black)

ω = ±
√

f 2 (1 + R2k2)

I group velocity is given by cg = (gH/ω)k (red line for f 6= 0)

I short wave limit for λ� R

ω
λ�R

= ±k
√
gH → cg

λ�R
= ±

√
gH k/k = c k/k

I long wave limit for λ� R

ω
λ�R

= ±f → cg
λ�R

= 0
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I consider again the (linearized) layered model with f 6= 0

∂u

∂t
− fv = −g ∂h

∂x
,
∂v

∂t
+ fu = −g ∂h

∂y
,
∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

I suppose we have a solid boundary at y = 0 → v |y=0 = 0

I look for solutions with v = 0 everywhere

∂u

∂t
= −g ∂h

∂x
, fu = −g ∂h

∂y
,
∂h

∂t
+ H

∂u

∂x
= 0

I combining the first and the last equation yields wave equation

∂2h

∂t2
− gH

∂2h

∂x2
= 0

with solution h = A exp i(kx − ωt), but now A = A(y)

I gravity wave (f = 0) in x with phase velocity c = ±
√
gH

I for y dependency of A we consider the second equation
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I solid boundary at y = 0, look for solutions with v = 0 everywhere

∂u

∂t
= −g ∂h

∂x
,
∂h

∂t
+ H

∂u

∂x
= 0 → ∂2h

∂t2
− gH

∂2h

∂x2
= 0

with solution h = A(y) exp i(kx − ωt) and ω = ±k
√
gH

I for y dependency of A we consider the second equation

I assume wave u = U(y) exp i(kx − ωt) with amplitude U from

∂u

∂t
= −g ∂h

∂x
→ − iωU exp i(...) = −gikA exp i(...) → U = g

kA

ω

I using this in the second equation yields

fu = −g ∂h
∂y
→ (f /c)A = −A′ → A = A0e

−f y/c = A0e
±y/R

with c = ω/k = ±
√
gH and with Rossby radius R =

√
gH/|f |

I only the decaying solution in y is reasonable

I Kelvin wave
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I Kelvin wave along solid boundary at y = 0

h = A0e
±y/R exp i(kx − ωt) , u = (gA0/c)e±y/R exp i(kx − ωt) , v = 0

and ω = ±k
√
gH and with Rossby radius R =

√
gH/|f |

I only the decaying solution in y is reasonable

I works in the same way for boundary along x or any other direction
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I tidal Kelvin wave in the North Sea

from Klett (2014)
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I consider the (linearized) layered model with f = const

∂u

∂t
− fv = −g ∂h

∂x
,
∂v

∂t
+ fu = −g ∂h

∂y
,
∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

I (linearized, D/Dt → ∂/∂t) potential vorticity equation

∂q

∂t
= 0 , q =

ζ + f

h
≈ ζ − f

H
h + f

I f in q for f = const does not matter → q = ζ − (f /H)h

I consider as initial condition u = 0 and h a step function such that

h|t=0 =

{
h0, if x < 0

−h0, if x > 0
→ q0 = q|t=0 =

{
−fh0/H, if x < 0

fh0/H, if x > 0

I using q(t) = q0 steady state solution (t →∞) is given by

fv∞ = g
∂h∞
∂x

, fu∞ = −g ∂h∞
∂y

→ q∞ =
g

f

∂2h∞
∂x2

+
g

f

∂2h∞
∂y2

− f

H
h∞ = q0

→ ∇2h∞ − R−2h∞ = (f /g)q0 with Rossby radius R =
√
gH/|f |
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I steady state solution (t →∞) is given by

∇2h∞ − R−2h∞ = (f /g)q0 =

{
−R−2h0, if x < 0

R−2h0, if x > 0

with Rossby radius R =
√
gH/|f |

I solution of h∞ is given by

h(x)∞ =

{
h0(1− ex/R), if x < 0

−h0(1− e−x/R), if x > 0

I since for x < 0 h′∞ = −h0/R ex/R and h′′∞ = −h0/R2 ex/R and

h′′∞ − R−2h∞ = −h0R−2ex/R − R−2h0(1− ex/R) = −R−2h0

I since for x > 0 h′∞ = −h0/R e−x/R and h′′∞ = h0/R
2 e−x/R and

h′′∞ − R−2h∞ = h0R
−2e−x/R + R−2h0(1− e−x/R) = R−2h0
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I initial and steady state solution of h are given by

h|t=0 =

{
h0, if x < 0

−h0, if x > 0
, h|∞ =

{
h0(1− ex/R), if x < 0

−h0(1− e−x/R), if x > 0

with Rossby radius R =
√
gH/|f |

I velocities from fv∞ = g∂h∞/∂x and fu∞ = −g∂h∞/∂y

u∞ = 0 , v∞ = (g/f )

{
−h0/Rex/R , if x < 0

−h0/Re−x/R , if x > 0
= −gh0

fR
e−|x|/R
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