11 - Waves and Instabilities

Waves

Layered models
Gravity waves without rotation
One-dimensional wave
Plane wave
Two waves
Gravity waves with rotation
Kelvin waves
Geostrophic adjustment

- consider a single layer system in hydrostatic approximation
- assume $\rho=$ const and no vertical shear $\partial u / \partial z=\partial v / \partial z=0$

- with sea level at $z=\eta$ and the bottom at $z=-H$
- consider a single layer system in hydrostatic approximation

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v & =-\frac{1}{\rho} \frac{\partial p}{\partial x} \\
\frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u & =-\frac{1}{\rho} \frac{\partial p}{\partial y} \\
\frac{\partial p}{\partial z} & =-g \rho \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} & =0
\end{aligned}
$$

- assume $\rho=$ const and no vertical shear $\partial u / \partial z=\partial v / \partial z=0$
- now vertically integrate continuity equation from bottom to top

$$
\begin{aligned}
\int_{-H}^{\eta}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) d z+\int_{-H}^{\eta} \frac{\partial w}{\partial z} d z & =0 \\
(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\left.w\right|_{\eta}-\left.w\right|_{-H} & =0
\end{aligned}
$$

with sea level at $z=\eta$ and the bottom at $z=-H$

- assume $\rho=$ const and no vertical shear $\partial u / \partial z=\partial v / \partial z=0$
- vertically integrate continuity equation from bottom to top

$$
(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\left.w\right|_{\eta}-\left.w\right|_{-H}=0
$$

- now use kinematic boundary conditions

$$
w_{-H}=0 \quad,\left.\quad w\right|_{\eta}=\frac{\partial \eta}{\partial t}+\left.u\right|_{\eta} \frac{\partial \eta}{\partial x}+\left.v\right|_{\eta} \frac{\partial \eta}{\partial y}
$$

which means no mass flux through upper and lower boundaries

- this yields

$$
\begin{aligned}
(H+\eta)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x}+v \frac{\partial \eta}{\partial y} & =0 \\
h\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+v \frac{\partial h}{\partial y} & =0 \\
\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(u h)+\frac{\partial}{\partial y}(v h) & =0
\end{aligned}
$$

which becomes a layer thickness equation for $h=H+\eta$

- assume $\rho=$ const and integrate hydrostatic balance from z to top

$$
\begin{aligned}
\frac{\partial p}{\partial z} & =-g \rho \\
\int_{z}^{\eta} \frac{\partial p}{\partial z} d z & =\left.p\right|_{\eta}-\left.p\right|_{z}=-g \rho \int_{z}^{\eta} d z=-g \rho(\eta-z) \\
p & =\left.p\right|_{\eta}-g \rho(z-\eta) \\
\nabla p & =g \rho \nabla \eta=g \rho \nabla h
\end{aligned}
$$

with layer thickness $h=\eta+H$

- momentum equation becomes

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x}=-g \frac{\partial h}{\partial x} \\
& \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u=-\frac{1}{\rho} \frac{\partial p}{\partial y}=-g \frac{\partial h}{\partial y}
\end{aligned}
$$

since $h(x, y, t)$ and $\partial u / \partial z=\partial v / \partial z=0$ equations are now 2-D

- single layer system in hydrostatic approximation

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v & =-g \frac{\partial h}{\partial x} \\
\frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u & =-g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(u h)+\frac{\partial}{\partial y}(v h) & =0
\end{aligned}
$$

- neglecting momentum advection for simplicity and assuming $H \gg$ in $h=H+\eta \rightarrow \nabla \cdot(\boldsymbol{u} h) \approx H \nabla \cdot u$

$$
\begin{aligned}
\frac{\partial u}{\partial t}-f v & =-g \frac{\partial h}{\partial x} \\
\frac{\partial v}{\partial t}+f u & =-g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) & =0
\end{aligned}
$$

simple system which contains almost all relevant dynamics

- two layers with $\rho_{1}=\rho=$ const and $\rho_{2}=\rho+\Delta \rho=$ const
- sea surface at $z=\eta$ and layer interface $z=-h_{i}$
- assume again no vertical shear $\partial u_{1,2} / \partial z=\partial v_{1,2} / \partial z=0$ in layers

- pressure gradient in upper layer $g \rho \nabla \eta$
- pressure gradient in lower layer $-g(\rho+\Delta \rho) \nabla h_{i}+g \rho \nabla\left(\eta+h_{i}\right)$
- upper layer equations

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial t}+\boldsymbol{u}_{1} \cdot \nabla u_{1}-f v_{1} & =-g \frac{\partial \eta}{\partial x} \\
\frac{\partial v_{1}}{\partial t}+\boldsymbol{u}_{1} \cdot \nabla v_{1}+f u_{1} & =-g \frac{\partial \eta}{\partial y} \\
\frac{\partial}{\partial t}\left(\eta+h_{i}\right)+\frac{\partial}{\partial x} u_{1}\left(\eta+h_{i}\right)+\frac{\partial}{\partial y} v_{1}\left(\eta+h_{i}\right) & =0
\end{aligned}
$$

- lower layer equations

$$
\begin{aligned}
\frac{\partial u_{2}}{\partial t}+\boldsymbol{u}_{2} \cdot \nabla u_{2}-f v_{2} & =g \frac{\Delta \rho}{\rho} \frac{\partial h_{i}}{\partial x}-g \frac{\partial \eta}{\partial x} \\
\frac{\partial v_{2}}{\partial t}+\boldsymbol{u}_{2} \cdot \nabla v_{2}+f u_{2} & =g \frac{\Delta \rho}{\rho} \frac{\partial h_{i}}{\partial y}-g \frac{\partial \eta}{\partial y} \\
\frac{\partial}{\partial t}\left(H-h_{i}\right)+\frac{\partial}{\partial x} u_{2}\left(H-h_{i}\right)+\frac{\partial}{\partial y} v_{2}\left(H-h_{i}\right) & =0
\end{aligned}
$$

- assume that lower layer is infinitively deep and motionless

$$
0=g \frac{\Delta \rho}{\rho} \nabla h_{i}-g \nabla \eta \quad \rightarrow \quad \frac{\Delta \rho}{\rho} h_{i}-\eta=\mathrm{const}=0 \quad \rightarrow \quad \eta=\frac{\Delta \rho}{\rho} h_{i}
$$

vanishing pressure variations in lower layer

- assume that lower layer is infinitively deep and motionless

$$
0=g \frac{\Delta \rho}{\rho} \nabla h_{i}-g \nabla \eta \quad \rightarrow \quad \eta=\frac{\Delta \rho}{\rho} h_{i}
$$

vanishing pressure variations in lower layer

- upper layer equations become

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial t}+\boldsymbol{u}_{1} \cdot \nabla u_{1}-f v_{1} & =-g^{\prime} \frac{\partial h_{i}}{\partial x} \\
\frac{\partial v_{1}}{\partial t}+\boldsymbol{u}_{1} \cdot \nabla v_{1}+f u_{1} & =-g^{\prime} \frac{\partial h_{i}}{\partial y} \\
\frac{\partial}{\partial t} h_{i}+\frac{\partial}{\partial x}\left(u_{1} h_{i}\right)+\frac{\partial}{\partial y}\left(v_{1} h_{i}\right) & =0
\end{aligned}
$$

with "reduced gravity" $g^{\prime}=g \Delta \rho / \rho$

- "barotropic model" and "baroclinic model"

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla u-f v & =-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+\boldsymbol{u} \cdot \nabla v+f u=-g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t}+ & \frac{\partial}{\partial x}(u h)+\frac{\partial}{\partial y}(v h)=0
\end{aligned}
$$

- h is total thickness (" barotropic") or layer interface h_{i} (" baroclinic")
- either $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ ("barotropic") or $g \rightarrow g \Delta \rho / \rho_{0}$ ("baroclinic")

- consider the (linearized) layered model with $f=0$
and also set y dependency to zero $\rightarrow v=0$

$$
\frac{\partial u}{\partial t}-\notin=-g \frac{\partial h}{\partial x}, \frac{\partial y}{\partial t}+f K=-g \frac{\partial \not \partial}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial y}{\partial y}\right)=0
$$

- combine momentum and thickness equation to wave equation

$$
\frac{\partial}{\partial x} \frac{\partial u}{\partial t}=-g \frac{\partial}{\partial x} \frac{\partial h}{\partial x}, \frac{\partial}{\partial t} \frac{\partial h}{\partial t}+H \frac{\partial}{\partial t} \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

- try particular solution $h(x, t)=\sin k(x-c t)$

$$
\begin{array}{ll}
\frac{\partial h}{\partial t}=-k c \cos k(x-c t) & , \frac{\partial^{2} h}{\partial t^{2}}=-(k c)^{2} \sin k(x-c t) \\
\frac{\partial h}{\partial x}=k \cos k(x-c t) \quad, \frac{\partial^{2} h}{\partial x^{2}}=-k^{2} \sin k(x-c t)
\end{array}
$$

this works as long as

$$
-(k c)^{2} \sin (. .)+k^{2} g H \sin (. .)=0 \rightarrow c^{2}=g H \rightarrow c= \pm \sqrt{g H}
$$

which is the dispersion relation for a gravity wave (for $f=0$)

- gravity wave equation (for $f=0$)

$$
\frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

- a particular solution is $h(x, t)=\sin k(x-c t)$
- $h=A \sin k(x-c t)$ with constant amplitude A is also solution and also $h=A \sin (k(x-c t)+\phi)$ with constant phase ϕ
- more general wave solution is

$$
h=A \sin k(x-c t)+B \cos k(x-c t)
$$

- or write more compact as

$$
\begin{aligned}
h= & \operatorname{Re}\left\{A e^{i k(x-c t)}\right\}=\operatorname{Re}\left\{\left(A_{r}+i A_{i}\right)(\cos k(x-c t)+i \sin k(x-c t))\right\} \\
= & \operatorname{Re}\left\{A_{r} \cos k(x-c t)+i A_{r} \sin k(x-c t)\right\} \\
& +\operatorname{Re}\left\{i A_{i} \cos k(x-c t)-A_{i} \sin k(x-c t)\right\} \\
= & A_{r} \cos k(x-c t)-A_{i} \sin k(x-c t)
\end{aligned}
$$

with complex constant A with $\operatorname{Re}\{A\}=A_{r}$ and $\operatorname{Im}\{A\}=A_{i}$
with Euler relation $e^{i \phi}=\cos \phi+i \sin \phi$

- gravity wave equation (for $f=0) \partial^{2} h / \partial t^{2}-g H \partial^{2} h / \partial x^{2}=0$
- wave solution is given by $h=A e^{i k(x-c t)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c= \pm \sqrt{g H}$
- consider $h=\sin k(x-c t)$ at $t=0 \rightarrow h=\sin k x$ (black line) \rightarrow wavelength is $\lambda=2 \pi / k, k$ is wavenumber
- consider h at $t=0$ (black line) and at later time $t=\Delta t$ (blue line) phase where $h=0$ was at $t=0$ at $x=0$ but at $t=\Delta t$ at $x=c \Delta t$ $\rightarrow c=d x / d t$ is the velocity at which constant phase propagates \rightarrow phase velocity

- gravity wave equation (for $f=0) \partial^{2} h / \partial t^{2}-g H \partial^{2} h / \partial x^{2}=0$
- wave solution is given by $h=A e^{i k(x-c t)}$ with complex amplitude A (Re is often dropped for convenience) as long as $c= \pm \sqrt{g H}$
- wavelength $\lambda=2 \pi / k$ with wavenumber k
- phase velocity c with dispersion relation $c= \pm \sqrt{g H}$
- rewrite solution as $h=A e^{i(k x-\omega t)}$ with frequency $\omega=c k$ and

$$
\omega= \pm k \sqrt{g H}
$$

- $T=2 \pi / \omega$ is the period in which a fixed phase pass a fixed point

- consider the (linearized) layered model with $f=0$
but now include y dependency \rightarrow plane wave
$\frac{\partial u}{\partial t}-\neq-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0$
- combine momentum and thickness equation to wave equation
$\boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{u}}{\partial t}=-\boldsymbol{\nabla} \cdot g \boldsymbol{\nabla} h, \frac{\partial}{\partial t} \frac{\partial h}{\partial t}+\frac{\partial}{\partial t} H \boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \nabla^{2} h=0$
- wave solution $h=A \exp i\left(k_{1} x+k_{2} y-\omega t\right)=A \exp i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)$
$\frac{\partial h}{\partial t}=-i \omega A \exp i(\ldots) \quad, \frac{\partial^{2} h}{\partial t^{2}}=(i \omega)^{2} A \exp i(\ldots)=-\omega^{2} A \exp i(\ldots)$
$\boldsymbol{\nabla} h=i \boldsymbol{k} A \exp i(\ldots) \quad, \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} h=i^{2} \boldsymbol{k} \cdot \boldsymbol{k} A \exp i(\ldots)=-k^{2} A \exp i(\ldots)$
with wavenumber vector $\boldsymbol{k}=\left(k_{1}, k_{2}\right)$ and $k=|\boldsymbol{k}|=\sqrt{k_{1}^{2}+k_{2}^{2}}$
- this works as long as
$-\omega^{2} \exp i(.)+.k^{2} g H \exp i(.)=.0 \rightarrow \omega^{2}=k^{2} g H \rightarrow \omega= \pm k \sqrt{g H}$
which is still the dispersion relation for a gravity wave (for $f=0$)
- plane gravity wave (for $f=0$) is given by $h=A \exp i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)$
- wavenumber vector \boldsymbol{k} gives direction of phase propagation
- zonal and meridional wave length λ_{x}, λ_{y} and "real" wavelength λ

$$
\lambda_{x}=2 \pi / k_{1}, \lambda_{y}=2 \pi / k_{2}, \lambda=2 \pi / k=2 \pi / \sqrt{k_{1}^{2}+k_{2}^{2}}
$$

but note that $\lambda \neq \sqrt{\lambda_{x}^{2}+\lambda_{y}^{2}}$

- plane gravity wave (for $f=0$) is given by $h=A \exp i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)$
- phase velocity c with dispersion relation $c= \pm \sqrt{g H}$ or $\omega= \pm k \sqrt{g H}$
- phase propagates from $t=0$ to $t=\Delta t$ the distance $\Delta s=c \Delta t$
- along x-axis the distance $\Delta x=c_{x} \Delta t=\Delta t \omega / k_{1} \rightarrow c_{x}=\omega / k_{1}$ along y-axis the distance $\Delta y=c_{y} \Delta t=\Delta t \omega / k_{2} \rightarrow c_{y}=\omega / k_{2}$ but note that $c \neq \sqrt{c_{x}^{2}+c_{y}^{2}}$

- add two waves with different \boldsymbol{k} and ω but same amplitude

$$
\begin{aligned}
h & =A \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)+A \cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{x}-\omega^{\prime} t\right) \\
& =2 A \cos \left(\frac{\boldsymbol{k}^{\prime}-\boldsymbol{k}}{2} \cdot \boldsymbol{x}-\frac{\omega^{\prime}-\omega}{2} t\right) \cos \left(\frac{\boldsymbol{k}^{\prime}+\boldsymbol{k}}{2} \cdot \boldsymbol{x}-\frac{\omega^{\prime}+\omega}{2} t\right)
\end{aligned}
$$

with $\omega=|\boldsymbol{k}| \sqrt{g H}=\omega(\boldsymbol{k})$ and $\omega^{\prime}=\left|\boldsymbol{k}^{\prime}\right| \sqrt{g H}=\omega\left(\boldsymbol{k}^{\prime}\right)$

- for similar wave numbers $\boldsymbol{k}^{\prime}=\boldsymbol{k}+\Delta \boldsymbol{k}$ with small $\Delta \boldsymbol{k}$

$$
\begin{aligned}
\omega\left(\boldsymbol{k}^{\prime}\right) & =\omega(\boldsymbol{k}+\Delta \boldsymbol{k})=\omega(\boldsymbol{k})+\frac{\partial \omega}{\partial k_{1}} \Delta k_{x}+\frac{\partial \omega}{\partial k_{2}} \Delta k_{y}+\cdots \\
& =\omega(\boldsymbol{k})+\boldsymbol{c}_{g} \cdot \boldsymbol{\Delta} \boldsymbol{k}+\cdots \rightarrow \omega\left(\boldsymbol{k}^{\prime}\right)-\omega(\boldsymbol{k}) \approx \boldsymbol{c}_{g} \cdot \Delta \boldsymbol{k}
\end{aligned}
$$

with the group velocity $\boldsymbol{c}_{g}=\left(\frac{\partial \omega}{\partial k_{1}}, \frac{\partial \omega}{\partial k_{2}}\right)=\partial \omega / \partial \boldsymbol{k}$

$$
\begin{aligned}
h & \approx 2 A \cos \left(\frac{\Delta \boldsymbol{k}}{2} \cdot \boldsymbol{x}-\frac{\boldsymbol{c}_{\boldsymbol{g}} \cdot \Delta \boldsymbol{k}}{2} t\right) \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t) \\
h & \approx 2 A \cos \left(\frac{\Delta \boldsymbol{k}}{2} \cdot\left[\boldsymbol{x}-\boldsymbol{c}_{g} t\right]\right) \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)
\end{aligned}
$$

- amplitude modulation with speed \boldsymbol{c}_{g} and wave length $\Delta \boldsymbol{k}$
- add two waves with different \boldsymbol{k} and ω but same amplitude

$$
\begin{aligned}
h & =A \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)+A \cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{x}-\omega^{\prime} t\right) \\
h & \approx 2 A \cos \left(\frac{\Delta \boldsymbol{k}}{2} \cdot\left[\boldsymbol{x}-\boldsymbol{c}_{g} t\right]\right) \cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)
\end{aligned}
$$

with the wavenumber difference $\Delta \boldsymbol{k}=\boldsymbol{k}^{\prime}-\boldsymbol{k}$ and the group velocity $\boldsymbol{c}_{g}=\left(\frac{\partial \omega}{\partial k_{1}}, \frac{\partial \omega}{\partial k_{2}}\right)=\partial \omega / \partial \boldsymbol{k}$

- amplitude modulation with speed \boldsymbol{c}_{g} and wave length $\Delta \boldsymbol{k}$

- \boldsymbol{c}_{g} is the speed at which the amplitudes (energy) propagates
- while c is the propagation speed of the phase (in the direction \boldsymbol{k})
- both are in general different and different from particle velocity
- consider the (linearized, $D / D t \rightarrow \partial / \partial t$) layered model with $f \neq 0$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y} \\
& \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{aligned}
$$

- take divergence of mom. equation, i.e. $\partial(1 . e q n) / \partial x+\partial(2 . e q n) / \partial y$

$$
\begin{aligned}
\frac{\partial}{\partial x}(1 . \text { eqn }): & \frac{\partial}{\partial t} \frac{\partial u}{\partial x}-\frac{\partial}{\partial x}(f v) \\
\frac{\partial}{\partial y}(2 . \text { eqn }): & \frac{\partial}{\partial t} \frac{\partial v}{\partial y}+\frac{\partial^{2} h}{\partial x^{2}} \\
\frac{\partial y}{\partial y}(f u) & =-g \frac{\partial^{2} h}{\partial y^{2}}
\end{aligned}
$$

add both

$$
\begin{aligned}
\frac{\partial}{\partial t} \xi-\frac{\partial}{\partial x}(f v)+\frac{\partial}{\partial y}(f u) & =-g \nabla^{2} h \\
\frac{\partial}{\partial t} \xi-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) & =-g \nabla^{2} h
\end{aligned}
$$

with $\xi=\partial u / \partial x+\partial v / \partial y$ and for $f=\mathrm{const}$

- consider the (linearized, $D / D t \rightarrow \partial / \partial t$) layered model with $f \neq 0$

$$
\begin{gathered}
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x} \quad, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
\end{gathered}
$$

- take curl of mom. equation, i.e. $\partial(2 . e q n) / \partial x-\partial(1 . e q n) / \partial y$

$$
\begin{aligned}
\frac{\partial}{\partial x}(2 . \text { eqn }): \frac{\partial}{\partial x} \frac{\partial v}{\partial t}+\frac{\partial}{\partial x}(f u) & =-g \frac{\partial^{2} h}{\partial x \partial y} \\
\frac{\partial}{\partial y}(1 . \text { eqn }): \frac{\partial}{\partial y} \frac{\partial u}{\partial t}-\frac{\partial}{\partial y}(f v) & =-g \frac{\partial^{2} h}{\partial x \partial y}
\end{aligned}
$$

subtract both

$$
\begin{aligned}
\frac{\partial}{\partial t} \zeta+\frac{\partial}{\partial x}(f u)+\frac{\partial}{\partial y}(f v) & =0 \\
\frac{\partial}{\partial t} \zeta-f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) & =0
\end{aligned}
$$

with $\zeta=\partial v / \partial x-\partial u / \partial y$ and for $f=$ const

- thickness, curl and divergence for $f=$ const

$$
\begin{aligned}
\frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) & =0 \\
\frac{\partial \zeta}{\partial t}+f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) & =0 \\
\frac{\partial \xi}{\partial t}-f\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) & =-g \nabla^{2} h
\end{aligned}
$$

with $\zeta=\partial v / \partial x-\partial u / \partial y$ and $\xi=\partial u / \partial x+\partial v / \partial y$

- time differentiate divergence and replace with curl and thickness eq.

$$
\begin{aligned}
\frac{\partial^{2} \xi}{\partial t^{2}}-f \frac{\partial \zeta}{\partial t} & =-g \nabla^{2} \frac{\partial h}{\partial t} \\
\frac{\partial^{2}}{\partial t^{2}} \xi+f^{2} \xi & =g H \nabla^{2} \xi \\
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-\left(g H / f^{2}\right) \nabla^{2} \xi\right) & =0 \\
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \nabla^{2} \xi\right) & =0
\end{aligned}
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- combined thickness, curl and divergence eq. for $f=$ const

$$
\frac{\partial^{2} \xi}{\partial t^{2}}+f^{2}\left(\xi-R^{2} \frac{\partial^{2} \xi}{\partial x^{2}}-R^{2} \frac{\partial^{2} \xi}{\partial y^{2}}\right)=0
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- look for wave solutions

$$
\xi(x, y, t)=\xi_{0} \exp i\left(k_{1} x+k_{2} y-\omega t\right)
$$

with complex constant ξ_{0} which yields

$$
\begin{aligned}
(-i \omega)^{2} \xi_{0} \exp (\ldots)+f^{2}\left(1-R^{2}\left(i k_{1}\right)^{2}-R^{2}\left(i k_{2}\right)^{2}\right) \xi_{0} \exp (\ldots) & =0 \\
-\omega^{2}+f^{2}\left(1+R^{2} k_{1}^{2}+R^{2} k_{2}^{2}\right) & =0
\end{aligned}
$$

- this is a (plane wave) solution as long as ω satisfies

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

with $k^{2}=|\boldsymbol{k}|^{2}=k_{1}^{2}+k_{2}^{2}$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave
- short wave limit for $\lambda=2 \pi / k \ll R \rightarrow R^{2} k^{2} \gg 1$

$$
\omega \stackrel{R k \rightarrow \infty}{=} \pm \sqrt{f^{2} R^{2} k^{2}}= \pm k \sqrt{g H}, \quad c \stackrel{R k \rightarrow \infty}{=} \pm \sqrt{g H}
$$

\rightarrow (non-dispersive) gravity waves without rotation (black lines)

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}, \quad c= \pm \sqrt{f^{2}\left(1 / k^{2}+R^{2}\right)}
$$

- different phase velocity $c=\omega / k$ for different $\boldsymbol{k} \rightarrow$ dispersive wave
- long wave limit for $\lambda=2 \pi / k \gg R \rightarrow R^{2} k^{2} \ll 1$

$$
\omega \stackrel{R k \rightarrow 0}{=} \pm f, \quad c \stackrel{R k \rightarrow 0}{=} \pm \infty
$$

- these are inertial oscillations which also result from

$$
\partial u / \partial t-f v=0, \quad \partial v / \partial t+f u=0
$$

- trajectories of surface drifter \rightarrow inertial oscillations

from d'Asaro et al 1995
- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

- group velocity $\boldsymbol{c}_{g}=\partial \omega / \partial \boldsymbol{k}$ is given by

$$
\boldsymbol{c}_{g}=\binom{\partial \omega / \partial k_{1}}{\partial \omega / \partial k_{2}}= \pm\binom{\frac{1}{2}\left(f^{2}\left(1+R^{2} k^{2}\right)\right)^{-1 / 2} f^{2} R^{2} 2 k_{1}}{\frac{1}{2}\left(f^{2}\left(1+R^{2} k^{2}\right)\right)^{-1 / 2} f^{2} R^{2} 2 k_{2}}=\frac{g H}{\omega} \boldsymbol{k}
$$

- gravity wave dispersion relation ($f \neq 0$ in blue, $f=0$ in black)

$$
\omega= \pm \sqrt{f^{2}\left(1+R^{2} k^{2}\right)}
$$

- group velocity is given by $\boldsymbol{c}_{g}=(g H / \omega) \boldsymbol{k}$ (red line for $\left.f \neq 0\right)$
- short wave limit for $\lambda \ll R$

$$
\omega \stackrel{\lambda \ll R}{=} \pm k \sqrt{g H} \rightarrow \boldsymbol{c}_{g} \stackrel{\lambda \leqq R}{=} \pm \sqrt{g H} \boldsymbol{k} / \boldsymbol{k}=c \boldsymbol{k} / k
$$

- long wave limit for $\lambda \gg R$

$$
\omega \stackrel{\lambda \geqq R}{=} \pm f \quad \rightarrow \quad \boldsymbol{c}_{g} \stackrel{\lambda \geqq}{=} 0
$$

- consider again the (linearized) layered model with $f \neq 0$

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- suppose we have a solid boundary at $y=\left.0 \rightarrow v\right|_{y=0}=0$
- look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, f u=-g \frac{\partial h}{\partial y}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0
$$

- combining the first and the last equation yields wave equation

$$
\frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A \exp i(k x-\omega t)$, but now $A=A(y)$

- gravity wave $(f=0)$ in x with phase velocity $c= \pm \sqrt{g H}$
- for y dependency of A we consider the second equation
- solid boundary at $y=0$, look for solutions with $v=0$ everywhere

$$
\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x}, \frac{\partial h}{\partial t}+H \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial^{2} h}{\partial t^{2}}-g H \frac{\partial^{2} h}{\partial x^{2}}=0
$$

with solution $h=A(y) \exp i(k x-\omega t)$ and $\omega= \pm k \sqrt{g H}$

- for y dependency of A we consider the second equation
- assume wave $u=U(y) \exp i(k x-\omega t)$ with amplitude U from
$\frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x} \rightarrow-i \omega U \exp i(\ldots)=-g i k A \exp i(\ldots) \rightarrow U=g \frac{k A}{\omega}$
- using this in the second equation yields
$f u=-g \frac{\partial h}{\partial y} \rightarrow(f / c) A=-A^{\prime} \rightarrow A=A_{0} e^{-f y / c}=A_{0} e^{ \pm y / R}$
with $c=\omega / k= \pm \sqrt{g H}$ and with Rossby radius $R=\sqrt{g H} /|f|$
- only the decaying solution in y is reasonable
- Kelvin wave
- Kelvin wave along solid boundary at $y=0$ $h=A_{0} e^{ \pm y / R} \exp i(k x-\omega t), u=\left(g A_{0} / c\right) e^{ \pm y / R} \exp i(k x-\omega t), v=0$ and $\omega= \pm k \sqrt{g H}$ and with Rossby radius $R=\sqrt{g H} /|f|$
- only the decaying solution in y is reasonable
- works in the same way for boundary along x or any other direction

- tidal Kelvin wave in the North Sea

from Klett (2014)
- consider the (linearized) layered model with $f=$ const

$$
\frac{\partial u}{\partial t}-f v=-g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t}+f u=-g \frac{\partial h}{\partial y}, \quad \frac{\partial h}{\partial t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0
$$

- (linearized, $D / D t \rightarrow \partial / \partial t$) potential vorticity equation

$$
\frac{\partial q}{\partial t}=0, \quad q=\frac{\zeta+f}{h} \approx \zeta-\frac{f}{H} h+f
$$

- f in q for $f=$ const does not matter $\rightarrow q=\zeta-(f / H) h$
- consider as initial condition $\boldsymbol{u}=0$ and h a step function such that $\left.h\right|_{t=0}=\left\{\begin{array}{rl}h_{0}, & \text { if } x<0 \\ -h_{0}, & \text { if } x>0\end{array} \rightarrow q_{0}=\left.q\right|_{t=0}=\left\{\begin{aligned}-f h_{0} / H, & \text { if } x<0 \\ f h_{0} / H, & \text { if } x>0\end{aligned}\right.\right.$
using $q(t)=q_{0}$ steady state solution $(t \rightarrow \infty)$ is given by

$$
\begin{array}{r}
f v_{\infty}=g \frac{\partial h_{\infty}}{\partial x}, f u_{\infty}=-g \frac{\partial h_{\infty}}{\partial y} \\
\rightarrow q_{\infty}=\frac{g}{f} \frac{\partial^{2} h_{\infty}}{\partial x^{2}}+\frac{g}{f} \frac{\partial^{2} h_{\infty}}{\partial y^{2}}-\frac{f}{H} h_{\infty}=q_{0}
\end{array}
$$

$\rightarrow \nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}$ with Rossby radius $R=\sqrt{g H} /|f|$

- steady state solution $(t \rightarrow \infty)$ is given by

$$
\nabla^{2} h_{\infty}-R^{-2} h_{\infty}=(f / g) q_{0}=\left\{\begin{aligned}
-R^{-2} h_{0}, & \text { if } x<0 \\
R^{-2} h_{0}, & \text { if } x>0
\end{aligned}\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- solution of h_{∞} is given by

$$
h(x)_{\infty}=\left\{\begin{array}{cc}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.
$$

- since for $x<0 h_{\infty}^{\prime}=-h_{0} / R e^{x / R}$ and $h_{\infty}^{\prime \prime}=-h_{0} / R^{2} e^{x / R}$ and

$$
h_{\infty}^{\prime \prime}-R^{-2} h_{\infty}=-h_{0} R^{-2} e^{x / R}-R^{-2} h_{0}\left(1-e^{x / R}\right)=-R^{-2} h_{0}
$$

- since for $x>0 h_{\infty}^{\prime}=-h_{0} / R e^{-x / R}$ and $h_{\infty}^{\prime \prime}=h_{0} / R^{2} e^{-x / R}$ and

$$
h_{\infty}^{\prime \prime}-R^{-2} h_{\infty}=h_{0} R^{-2} e^{-x / R}+R^{-2} h_{0}\left(1-e^{-x / R}\right)=R^{-2} h_{0}
$$

- initial and steady state solution of h are given by

$$
\left.h\right|_{t=0}=\left\{\begin{array}{rl}
h_{0}, & \text { if } x<0 \\
-h_{0}, & \text { if } x>0
\end{array},\left.\quad h\right|_{\infty}=\left\{\begin{array}{cl}
h_{0}\left(1-e^{x / R}\right), & \text { if } x<0 \\
-h_{0}\left(1-e^{-x / R}\right), & \text { if } x>0
\end{array}\right.\right.
$$

with Rossby radius $R=\sqrt{g H} /|f|$

- velocities from $f v_{\infty}=g \partial h_{\infty} / \partial x$ and $f u_{\infty}=-g \partial h_{\infty} / \partial y$

$$
u_{\infty}=0, \quad v_{\infty}=(g / f)\left\{\begin{array}{ll}
-h_{0} / R e^{x / R}, & \text { if } x<0 \\
-h_{0} / R e^{-x / R}, & \text { if } x>0
\end{array}=-\frac{g h_{0}}{f R} e^{-|x| / R}\right.
$$

