Dynamische und regionale Ozeanographie WS 2014/15

Carsten Eden und Detlef Quadfasel

Institut für Meereskunde, Universität Hamburg

June 30, 2015

Lecture \# 9

Recapitulation

Elementarstromsystem
Ekman transport
Ekman pumping
Sverdrup transport
Sverdrup meets Ekman

Wind driven circulation
Western boundary currents
oral examination Tuesday July 7., 2015

- 13:00 Tabea Kilchling
- 13:30 Isabell Hochfeld
- 14:00 Lucas Schmidt
- 14:30 Annika Buck
- 15:00 Elena Hirschhoff
- 15:30 Heninng Dorff
- 16:00 Jerome Sauer
- 16:30 Carolin Meier ?
- 17:00 Sophie Specht ?
- 17:30 Anna Wünsche ?

- Schematic of the near-surface circulation (after Schmitz 1996). Subtropical gyres are red, subpolar and polar gyres blue equatorial gyres magenta, Antarctic Circumpolar Current is blue green lines represent exchange between basins and gyres

Recapitulation

Elementarstromsystem

Ekman transport
Ekman pumping
Sverdrup transport
Sverdrup meets Ekman

Wind driven circulation
Western boundary currents

- momentum equation in vector form for $R o \ll 1$

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\frac{1}{\rho_{0}} \nabla_{h} p+\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \text { with } \boldsymbol{k} \times \boldsymbol{u}=(-v, u, \emptyset)
$$

- $\boldsymbol{\tau}=\left(\tau^{x}, \tau^{y}\right)$ is a stress vector with $\tau(z=0)=\boldsymbol{\tau}^{a}$ where τ^{a} is the surface wind stress in $\mathrm{N} / \mathrm{m}^{2}$ acting on the ocean
- momentum equation in vector form for $R o \ll 1$

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\frac{1}{\rho_{0}} \nabla_{h} p+\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \text { with } \boldsymbol{k} \times \boldsymbol{u}=(-v, u, \emptyset)
$$

- $\boldsymbol{\tau}=\left(\tau^{x}, \tau^{y}\right)$ is a stress vector with $\boldsymbol{\tau}(z=0)=\boldsymbol{\tau}^{a}$ where $\boldsymbol{\tau}^{a}$ is the surface wind stress in $\mathrm{N} / \mathrm{m}^{2}$ acting on the ocean
- split the flow into geostrophic and frictional (Ekman) components, $\boldsymbol{u}=\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\left(\right.$ and $\left.w=w_{G}+w_{E}\right)$, governed by

$$
f \boldsymbol{k} \times \boldsymbol{u}_{G}=-\frac{1}{\rho_{0}} \nabla_{h} p \quad \text { and } \quad f \boldsymbol{k} \times \boldsymbol{u}_{E}=\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z}
$$

and the same for continuity equation

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}_{G}+\frac{\partial w_{G}}{\partial z}=0 \quad \text { and } \quad \boldsymbol{\nabla} \cdot \boldsymbol{u}_{E}+\frac{\partial w_{E}}{\partial z}=0
$$

- sum $\boldsymbol{u}_{G}+\boldsymbol{u}_{E}$ satisfies full momentum and continuity equation
- Elementarstromsystem (for $\rho=$ const)
- $\boldsymbol{u}=\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\left(\right.$ and $\left.w=w_{G}+w_{E}\right)$
surface and bottom Ekman layers superimposed on geostrophic flow

Recapitulation

Elementarstromsystem

Ekman transport
Ekman pumping Sverdrup transport Sverdrup meets Ekman

Wind driven circulation
Western boundary currents

- vertically integrated velocity

$$
\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z=\int_{-h}^{0}\left(\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\right) d z=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}
$$

- vertically integrated velocity

$$
\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z=\int_{-h}^{0}\left(\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\right) d z=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}
$$

- with the (total) transport vector \boldsymbol{U}, dimension $\mathrm{m}^{2} \mathrm{~s}^{-1}$
- vertically integrated velocity

$$
\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z=\int_{-h}^{0}\left(\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\right) d z=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}
$$

- with the (total) transport vector \boldsymbol{U}, dimension $\mathrm{m}^{2} \mathrm{~s}^{-1}$
- transport by the geostrophic velocity \rightarrow geostrophic transport \boldsymbol{U}_{G} transport by the Ekman velocity \rightarrow Ekman transport \boldsymbol{U}_{E}

$$
f \boldsymbol{k} \times \boldsymbol{u}_{E}=\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z}
$$

- vertically integrated velocity

$$
\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z=\int_{-h}^{0}\left(\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\right) d z=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}
$$

- with the (total) transport vector \boldsymbol{U}, dimension $\mathrm{m}^{2} \mathrm{~s}^{-1}$
- transport by the geostrophic velocity \rightarrow geostrophic transport \boldsymbol{U}_{G} transport by the Ekman velocity \rightarrow Ekman transport \boldsymbol{U}_{E}

$$
\begin{aligned}
f \boldsymbol{k} \times \boldsymbol{u}_{E} & =\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \\
f \boldsymbol{k} \times \int_{-h}^{0} \boldsymbol{u}_{E} d z & =\frac{1}{\rho_{0}}(\boldsymbol{\tau}(z=0)-\boldsymbol{\tau}(z=-h))
\end{aligned}
$$

- vertically integrated velocity

$$
\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z=\int_{-h}^{0}\left(\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\right) d z=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}
$$

- with the (total) transport vector \boldsymbol{U}, dimension $\mathrm{m}^{2} \mathrm{~s}^{-1}$
- transport by the geostrophic velocity \rightarrow geostrophic transport \boldsymbol{U}_{G} transport by the Ekman velocity \rightarrow Ekman transport \boldsymbol{U}_{E}

$$
\begin{aligned}
f \boldsymbol{k} \times \boldsymbol{u}_{E} & =\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \\
f \boldsymbol{k} \times \int_{-h}^{0} \boldsymbol{u}_{E} d z & =\frac{1}{\rho_{0}}(\boldsymbol{\tau}(z=0)-\boldsymbol{\tau}(z=-h)) \\
f \boldsymbol{k} \times \boldsymbol{U}_{E} & =\frac{1}{\rho_{0}}\left(\boldsymbol{\tau}^{a}-\boldsymbol{\tau}_{b}\right) \\
\boldsymbol{U}_{E} & =-\frac{1}{f \rho_{0}} \boldsymbol{k} \times\left(\boldsymbol{\tau}^{a}-\boldsymbol{\tau}_{b}\right)
\end{aligned}
$$

with surface wind stress τ^{a} and bottom stress τ_{b}

- vertically integrated velocity

$$
\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z=\int_{-h}^{0}\left(\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\right) d z=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}
$$

- with the (total) transport vector \boldsymbol{U}, dimension $\mathrm{m}^{2} \mathrm{~s}^{-1}$
- transport by the geostrophic velocity \rightarrow geostrophic transport \boldsymbol{U}_{G} transport by the Ekman velocity \rightarrow Ekman transport \boldsymbol{U}_{E}

$$
\begin{aligned}
f \boldsymbol{k} \times \boldsymbol{u}_{E} & =\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \\
f \boldsymbol{k} \times \int_{-h}^{0} \boldsymbol{u}_{E} d z & =\frac{1}{\rho_{0}}(\boldsymbol{\tau}(z=0)-\boldsymbol{\tau}(z=-h)) \\
f \boldsymbol{k} \times \boldsymbol{U}_{E} & =\frac{1}{\rho_{0}}\left(\boldsymbol{\tau}^{a}-\boldsymbol{\tau}_{b}\right) \\
\boldsymbol{U}_{E} & =-\frac{1}{f \rho_{0}} \boldsymbol{k} \times\left(\boldsymbol{\tau}^{a}-\boldsymbol{\tau}_{b}\right)
\end{aligned}
$$

with surface wind stress τ^{a} and bottom stress τ_{b}

- split \boldsymbol{U}_{E} into surface and bottom Ekman transport
- vertically integrated velocity $\boldsymbol{U}=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}$ with geostrophic transport \boldsymbol{U}_{G} and Ekman transport \boldsymbol{U}_{E} given by

$$
\boldsymbol{U}_{E}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times\left(\tau^{a}-\boldsymbol{\tau}_{b}\right)
$$

with surface wind stress τ^{a} and bottom stress τ_{b}

- vertically integrated velocity $\boldsymbol{U}=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}$ with geostrophic transport \boldsymbol{U}_{G} and Ekman transport \boldsymbol{U}_{E} given by

$$
\boldsymbol{U}_{E}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times\left(\boldsymbol{\tau}^{a}-\boldsymbol{\tau}_{b}\right) \equiv \boldsymbol{U}_{E}^{\text {top }}+\boldsymbol{U}_{E}^{b o t}
$$

with surface wind stress τ^{a} and bottom stress τ_{b}

- split into surface Ekman transport in surface Ekman layer

$$
\boldsymbol{U}_{E}^{\text {top }}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{\text {a }}
$$

orthogonal to wind stress direction (to the right for $f>0$) does not depend on parameterisation of τ in the interior

- vertically integrated velocity $\boldsymbol{U}=\boldsymbol{U}_{G}+\boldsymbol{U}_{E}$ with geostrophic transport \boldsymbol{U}_{G} and Ekman transport \boldsymbol{U}_{E} given by

$$
\boldsymbol{U}_{E}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times\left(\tau^{a}-\tau_{b}\right) \equiv \boldsymbol{U}_{E}^{\text {top }}+\boldsymbol{U}_{E}^{\text {bot }}
$$

with surface wind stress τ^{a} and bottom stress τ_{b}

- split into surface Ekman transport in surface Ekman layer

$$
\boldsymbol{U}_{E}^{\text {top }}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{a}
$$

orthogonal to wind stress direction (to the right for $f>0$) does not depend on parameterisation of τ in the interior

- and bottom Ekman transport in bottom Ekman layer

$$
\boldsymbol{U}_{E}^{b o t}=\frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}_{b}
$$

depends on parameterisation of τ in the interior

- Elementarstromsystem
- $\boldsymbol{u}=\boldsymbol{u}_{G}+\boldsymbol{u}_{E}\left(\right.$ and $\left.w=w_{G}+w_{E}\right)$
surface and bottom Ekman layers superimposed on geostrophic flow

- zonal (left) and meridional component (right) of $\boldsymbol{\tau}^{a}$ in $10^{-2} \mathrm{~N} / \mathrm{m}^{2}$

- surface Ekman transport in surface Ekman layer

$$
\boldsymbol{U}_{E}^{t o p}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{a}
$$

orthogonal to wind stress direction (to the right for $f>0$)

- zonal (left) and meridional component (right) of $\boldsymbol{\tau}^{a}$ in $10^{-2} \mathrm{~N} / \mathrm{m}^{2}$

- surface Ekman transport in surface Ekman layer

$$
\boldsymbol{U}_{E}^{\text {top }}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{a}
$$

orthogonal to wind stress direction (to the right for $f>0$)

- equatorward in west wind region poleward in trade wind region
- zonal (left) and meridional component (right) of τ^{a} in $10^{-2} \mathrm{~N} / \mathrm{m}^{2}$
a)

b)

- surface Ekman transport in surface Ekman layer

$$
\boldsymbol{U}_{E}^{t o p}=-\frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{a}
$$

orthogonal to wind stress direction (to the right for $f>0$)

- equatorward in west wind region poleward in trade wind region
- convergence between west wind and trade wind region
- divergence at high latitude and at equator

Recapitulation

Elementarstromsystem

Ekman transport

Ekman pumping

Sverdrup transport
Sverdrup meets Ekman

Wind driven circulation
Western boundary currents

- integrating the continuity equation for \boldsymbol{u}_{E} and w_{E} from z to $z=0$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}_{E}+\frac{\partial w_{E}}{\partial z}=0
$$

yields the vertical Ekman velocity

$$
\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} d z+w_{E}(z=0)-w_{E}(z)=0 \rightarrow w_{E}(z)=\nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} d z
$$

- integrating the continuity equation for \boldsymbol{u}_{E} and w_{E} from z to $z=0$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}_{E}+\frac{\partial w_{E}}{\partial z}=0
$$

yields the vertical Ekman velocity

$$
\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} d z+w_{E}(z=0)-w_{E}(z)=0 \rightarrow w_{E}(z)=\nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} d z
$$

- integrating the continuity equation for \boldsymbol{u}_{E} and w_{E} from z to $z=0$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}_{E}+\frac{\partial w_{E}}{\partial z}=0
$$

yields the vertical Ekman velocity

$$
\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} d z+w_{E}(z=0)-w_{E}(z)=0 \rightarrow w_{E}(z)=\nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} d z
$$

- since $\boldsymbol{u}_{E} \approx 0$ below Ekman depth $D \approx 50 \mathrm{~m}$
$\left.w_{E}\right|_{z<-D} \approx \boldsymbol{\nabla} \cdot \int_{z<-D}^{0} \boldsymbol{u}_{E} d z=\boldsymbol{\nabla} \cdot \boldsymbol{U}_{E}^{\text {top }}=-\boldsymbol{\nabla} \cdot \frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{\boldsymbol{a}}$
with Ekman pumping $\left.w_{E}\right|_{z<-D}$
- integrating the continuity equation for \boldsymbol{u}_{E} and w_{E} from z to $z=0$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}_{E}+\frac{\partial w_{E}}{\partial z}=0
$$

yields the vertical Ekman velocity

$$
\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} d z+w_{E}(z=0)-w_{E}(z)=0 \rightarrow w_{E}(z)=\nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} d z
$$

- since $\boldsymbol{u}_{E} \approx 0$ below Ekman depth $D \approx 50 \mathrm{~m}$
$\left.w_{E}\right|_{z<-D} \approx \boldsymbol{\nabla} \cdot \int_{z<-D}^{0} \boldsymbol{u}_{E} d z=\boldsymbol{\nabla} \cdot \boldsymbol{U}_{E}^{\text {top }}=-\boldsymbol{\nabla} \cdot \frac{1}{f \rho_{0}} \boldsymbol{k} \times \boldsymbol{\tau}^{a}=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \frac{\boldsymbol{\tau}^{a}}{\rho_{0} f}$
with Ekman pumping $\left.w_{E}\right|_{z<-D}$
- Ekman pumping w_{E} in m per year

$$
\left.w_{E}\right|_{z<-D} \approx \nabla \cdot \boldsymbol{U}_{E}^{t o p}=\boldsymbol{k} \times \nabla \cdot \frac{\boldsymbol{\tau}^{a}}{\rho_{0} f}
$$

with Ekman depth $D \approx 50 \mathrm{~m}$ (depends on A_{v})

- Ekman transport $\boldsymbol{U}_{E}^{\text {top }}$ and pumping w_{E} do not depend on A_{V}
- coastal upwelling

from Talley et al 2011
- equatorial upwelling

from Talley et al 2011

Recapitulation

Elementarstromsystem

Ekman transport
Ekman pumping
Sverdrup transport
Sverdrup meets Ekman

Wind driven circulation
Western boundary currents

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\frac{1}{\rho_{0}} \nabla_{h} p+\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \text { with } \boldsymbol{k} \times \boldsymbol{u}=(-v, u, 0)
$$

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\frac{1}{\rho_{0}} \nabla_{h} p+\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \text { with } \boldsymbol{k} \times \boldsymbol{u}=(-v, u, 0)
$$

- neglect sea surface height $z=\zeta \rightarrow$ assume rigid lid at $z=0$
- assume flat bottom at $z=-h=$ const
- vertically integrate from bottom to surface

$$
\rho_{0} f \boldsymbol{k} \times \boldsymbol{U}=-\boldsymbol{\nabla}_{h} \int_{-h}^{0} p d z+\boldsymbol{\tau}_{a}-\boldsymbol{\tau}_{b}
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$, surface and bottom stress $\boldsymbol{\tau}_{a}$ and $\boldsymbol{\tau}_{b}$

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\frac{1}{\rho_{0}} \nabla_{h} p+\frac{1}{\rho_{0}} \frac{\partial \boldsymbol{\tau}}{\partial z} \text { with } \boldsymbol{k} \times \boldsymbol{u}=(-v, u, 0)
$$

- neglect sea surface height $z=\zeta \rightarrow$ assume rigid lid at $z=0$
- assume flat bottom at $z=-h=$ const
- vertically integrate from bottom to surface

$$
\rho_{0} f \boldsymbol{k} \times \boldsymbol{U}=-\boldsymbol{\nabla}_{h} \int_{-h}^{0} p d z+\boldsymbol{\tau}_{a}-\boldsymbol{\tau}_{b}
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$, surface and bottom stress $\boldsymbol{\tau}_{a}$ and $\boldsymbol{\tau}_{b}$

- take curl and it follows the famous Sverdrup relation

$$
\rho_{0} \beta V=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot\left(\boldsymbol{\tau}_{a}-\boldsymbol{\tau}_{b}\right)
$$

where $\boldsymbol{\tau}_{b}$ is often neglected

- depth integrated transport V calculated from wind stress curl only
- since $\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}=0$ introduce volume transport streamfunction, with

$$
U=-\frac{\partial \psi}{\partial y} \quad, \quad V=\frac{\partial \psi}{\partial x} \quad \rightarrow \quad \boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi
$$

transport \boldsymbol{U} is parallel to contour lines of ψ

- since $\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}=0$ introduce volume transport streamfunction, with

$$
U=-\frac{\partial \psi}{\partial y} \quad, \quad V=\frac{\partial \psi}{\partial x} \quad \rightarrow \quad \boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi
$$

transport \boldsymbol{U} is parallel to contour lines of ψ

- ψ determines transport perpendicular to or "across" section $A \rightarrow B$
- since $\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}=0$ introduce volume transport streamfunction, with

$$
U=-\frac{\partial \psi}{\partial y} \quad, \quad V=\frac{\partial \psi}{\partial x} \quad \rightarrow \quad \boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi
$$

transport \boldsymbol{U} is parallel to contour lines of ψ

- ψ determines transport perpendicular to or "across" section $A \rightarrow B$
- Sverdrup relation becomes

$$
\rho_{0} \beta V=\rho_{0} \beta \frac{\partial \psi}{\partial x}=\boldsymbol{k} \times \nabla \cdot \boldsymbol{\tau}_{a}
$$

for $\boldsymbol{\tau}_{b}=0$

- since $\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}=0$ introduce volume transport streamfunction, with

$$
U=-\frac{\partial \psi}{\partial y} \quad, \quad V=\frac{\partial \psi}{\partial x} \quad \rightarrow \quad \boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi
$$

transport \boldsymbol{U} is parallel to contour lines of ψ

- ψ determines transport perpendicular to or "across" section $A \rightarrow B$
- Sverdrup relation becomes

$$
\rho_{0} \beta V=\rho_{0} \beta \frac{\partial \psi}{\partial x}=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}
$$

for $\boldsymbol{\tau}_{b}=0$

- integration from eastern boundary $\left(x=x_{E}\right)$ where $\psi\left(x_{E}\right)=0$

$$
\psi(x, y)=-\frac{1}{\rho_{0} \beta} \int_{x}^{x_{e}} \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a} d x
$$

- $\psi\left(x_{E}\right)=0$ along east eastern boundary but not at western boundary \rightarrow western boundary current not included
- $\psi=-1 /\left(\rho_{0} \beta\right) \int_{x}^{x_{e}} \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}^{a} d x$ from realistic wind stress in $10^{6} \mathrm{~m}^{3} / \mathrm{s} \equiv 1 \mathrm{~Sv}$

- ψ in a global state estimate in $10^{6} \mathrm{~m}^{3} / \mathrm{s} \equiv 1 \mathrm{~Sv}$

- Streamfunction ψ in $S v=10^{6} \mathrm{~m}^{3} / \mathrm{s}$ from simple Sverdrup relation
- Streamfunction ψ for a realistic model of the Atlantic Ocean

b)

- simple Sverdrup relation works surprisingly well

Recapitulation

Elementarstromsystem
 Ekman transport
 Ekman pumping
 Sverdrup transport

Sverdrup meets Ekman

Wind driven circulation
Western boundary currents

- vertically integrated momentum equation

$$
\begin{aligned}
-\rho_{0} f V & =-\frac{\partial}{\partial x} \int_{-h}^{0} p d z+\tau_{a}^{x} \equiv-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U & =-\frac{\partial}{\partial y} \int_{-h}^{0} p d z+\tau_{a}^{y} \equiv-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- vertically integrated momentum equation

$$
\begin{aligned}
-\rho_{0} f V & =-\frac{\partial}{\partial x} \int_{-h}^{0} p d z+\tau_{a}^{x} \equiv-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U & =-\frac{\partial}{\partial y} \int_{-h}^{0} p d z+\tau_{a}^{y} \equiv-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- split in Ekman transport \boldsymbol{U}_{E} und geostrophic transport \boldsymbol{U}_{G}

$$
\begin{aligned}
-\rho_{0} f V \equiv-\rho_{0} f\left(V_{G}+V_{E}\right) & =-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U \equiv \rho_{0} f\left(U_{G}+U_{E}\right) & =-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- vertically integrated momentum equation

$$
\begin{aligned}
-\rho_{0} f V & =-\frac{\partial}{\partial x} \int_{-h}^{0} p d z+\tau_{a}^{x} \equiv-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U & =-\frac{\partial}{\partial y} \int_{-h}^{0} p d z+\tau_{a}^{y} \equiv-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- split in Ekman transport \boldsymbol{U}_{E} und geostrophic transport \boldsymbol{U}_{G}

$$
\begin{aligned}
-\rho_{0} f V \equiv-\rho_{0} f\left(V_{G}+V_{E}\right) & =-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U \equiv \rho_{0} f\left(U_{G}+U_{E}\right) & =-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x}, \rho_{0} f U_{E}=\tau_{a}^{y} \rightarrow \rho_{0} f \boldsymbol{k} \times \boldsymbol{U}_{E}=\boldsymbol{\tau}_{a} \rightarrow \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- vertically integrated momentum equation

$$
\begin{aligned}
-\rho_{0} f V & =-\frac{\partial}{\partial x} \int_{-h}^{0} p d z+\tau_{a}^{x} \equiv-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U & =-\frac{\partial}{\partial y} \int_{-h}^{0} p d z+\tau_{a}^{y} \equiv-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- split in Ekman transport \boldsymbol{U}_{E} und geostrophic transport \boldsymbol{U}_{G}

$$
\begin{aligned}
-\rho_{0} f V \equiv-\rho_{0} f\left(V_{G}+V_{E}\right) & =-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U \equiv \rho_{0} f\left(U_{G}+U_{E}\right) & =-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x}, \rho_{0} f U_{E}=\tau_{a}^{y} \rightarrow \rho_{0} f \boldsymbol{k} \times \boldsymbol{U}_{E}=\boldsymbol{\tau}_{a} \rightarrow \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and with geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x}, \rho_{0} f U_{G}=-\frac{\partial P}{\partial y} \rightarrow \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- vertically integrated momentum equation

$$
\begin{aligned}
-\rho_{0} f V & =-\frac{\partial}{\partial x} \int_{-h}^{0} p d z+\tau_{a}^{x} \equiv-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U & =-\frac{\partial}{\partial y} \int_{-h}^{0} p d z+\tau_{a}^{y} \equiv-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- split in Ekman transport \boldsymbol{U}_{E} und geostrophic transport \boldsymbol{U}_{G}

$$
\begin{aligned}
-\rho_{0} f V \equiv-\rho_{0} f\left(V_{G}+V_{E}\right) & =-\frac{\partial P}{\partial x}+\tau_{a}^{x} \\
\rho_{0} f U \equiv \rho_{0} f\left(U_{G}+U_{E}\right) & =-\frac{\partial P}{\partial y}+\tau_{a}^{y}
\end{aligned}
$$

- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x}, \rho_{0} f U_{E}=\tau_{a}^{y} \rightarrow \rho_{0} f \boldsymbol{k} \times \boldsymbol{U}_{E}=\boldsymbol{\tau}_{a} \rightarrow \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and with geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x}, \rho_{0} f U_{G}=-\frac{\partial P}{\partial y} \rightarrow \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- Ekman transport + geostr. transport $=$ Sverdrup transport
- Ekman transport + geostr. transport $=$ Sverdrup transport
- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x} \quad, \quad \rho_{0} f U_{E}=\tau_{a}^{y} \quad, \quad \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x} \quad, \quad \rho_{0} f U_{G}=-\frac{\partial P}{\partial y}, \quad \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- Ekman transport + geostr. transport $=$ Sverdrup transport
- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x} \quad, \quad \rho_{0} f U_{E}=\tau_{a}^{y} \quad, \quad \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x}, \quad \rho_{0} f U_{G}=-\frac{\partial P}{\partial y} \quad, \quad \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- both transports are divergent

$$
\nabla_{h} \cdot \boldsymbol{U}_{E}=-\nabla_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=\boldsymbol{k} \times \nabla_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=w_{E}
$$

- Ekman transport + geostr. transport $=$ Sverdrup transport
- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{\times} \quad, \quad \rho_{0} f U_{E}=\tau_{a}^{y} \quad, \quad \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x}, \quad \rho_{0} f U_{G}=-\frac{\partial P}{\partial y} \quad, \quad \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- both transports are divergent

$$
\begin{aligned}
& \boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{E}=-\boldsymbol{\nabla}_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=\boldsymbol{k} \times \boldsymbol{\nabla}_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=w_{E} \\
& \boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{G}=-\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0} f}\right)+\frac{\partial}{\partial y}\left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0} f}\right)=\frac{\partial P}{\partial x} \frac{\partial}{\partial y}\left(\frac{1}{\rho_{0} f}\right)
\end{aligned}
$$

- Ekman transport + geostr. transport $=$ Sverdrup transport
- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x} \quad, \quad \rho_{0} f U_{E}=\tau_{a}^{y} \quad, \quad \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x} \quad, \quad \rho_{0} f U_{G}=-\frac{\partial P}{\partial y}, \quad \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- both transports are divergent

$$
\begin{aligned}
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{E} & =-\boldsymbol{\nabla}_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=\boldsymbol{k} \times \boldsymbol{\nabla}_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=w_{E} \\
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{G} & =-\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0} f}\right)+\frac{\partial}{\partial y}\left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0} f}\right)=\frac{\partial P}{\partial x} \frac{\partial}{\partial y}\left(\frac{1}{\rho_{0} f}\right) \\
& =-\frac{1}{\rho_{0} f^{2}} \frac{d f}{d y} \frac{\partial P}{\partial x}=-\frac{\beta}{\rho_{0} f^{2}} \frac{\partial P}{\partial x}
\end{aligned}
$$

- Ekman transport + geostr. transport $=$ Sverdrup transport
- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x} \quad, \quad \rho_{0} f U_{E}=\tau_{a}^{y} \quad, \quad \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x} \quad, \quad \rho_{0} f U_{G}=-\frac{\partial P}{\partial y}, \quad \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- both transports are divergent

$$
\begin{aligned}
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{E} & =-\boldsymbol{\nabla}_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=\boldsymbol{k} \times \boldsymbol{\nabla}_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=w_{E} \\
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{G} & =-\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0} f}\right)+\frac{\partial}{\partial y}\left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0} f}\right)=\frac{\partial P}{\partial x} \frac{\partial}{\partial y}\left(\frac{1}{\rho_{0} f}\right) \\
& =-\frac{1}{\rho_{0} f^{2}} \frac{d f}{d y} \frac{\partial P}{\partial x}=-\frac{\beta}{\rho_{0} f^{2}} \frac{\partial P}{\partial x}=-\frac{\beta}{f} V_{G}
\end{aligned}
$$

- Ekman transport + geostr. transport $=$ Sverdrup transport
- with Ekman transport

$$
-\rho_{0} f V_{E}=\tau_{a}^{x} \quad, \quad \rho_{0} f U_{E}=\tau_{a}^{y} \quad, \quad \rho_{0} f \boldsymbol{U}_{E}=-\boldsymbol{k} \times \boldsymbol{\tau}_{a}
$$

- and geostrophic transport

$$
-\rho_{0} f V_{G}=-\frac{\partial P}{\partial x}, \quad \rho_{0} f U_{G}=-\frac{\partial P}{\partial y}, \quad \rho_{0} f \boldsymbol{U}_{G}=\boldsymbol{k} \times \nabla_{h} P
$$

- both transports are divergent

$$
\begin{aligned}
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{E} & =-\boldsymbol{\nabla}_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=\boldsymbol{k} \times \boldsymbol{\nabla}_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0} f}=w_{E} \\
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{G} & =-\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0} f}\right)+\frac{\partial}{\partial y}\left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0} f}\right)=\frac{\partial P}{\partial x} \frac{\partial}{\partial y}\left(\frac{1}{\rho_{0} f}\right) \\
& =-\frac{1}{\rho_{0} f^{2}} \frac{d f}{d y} \frac{\partial P}{\partial x}=-\frac{\beta}{\rho_{0} f^{2}} \frac{\partial P}{\partial x}=-\frac{\beta}{f} V_{G}
\end{aligned}
$$

- but the total transport $\boldsymbol{U}=\boldsymbol{U}_{E}+\boldsymbol{U}_{G}$ is non-divergent

$$
\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}=0 \quad \rightarrow \quad w_{E}^{\text {top }}=\frac{\beta}{f} V_{G}
$$

Ekman pumping generates southward geostr. transport (for $f_{\equiv}>0$)

- Ekman pumping generates southward geostr. transport (for $f>0$)

from Talley et al 2011
- Sverdrup relation follows from potential vorticity conservation
- potential vorticity equation for a single layer

$$
\frac{D q}{D t}=0 \quad, \quad q=\frac{\zeta+f}{h} \text { or } q \approx \zeta-\frac{f_{0}}{H} h+f
$$

q is conserved for fluid parcels in single layer

- w_{E} lead to vortex stretching and meridional motion

Recapitulation

Elementarstromsystem
 Ekman transport
 Ekman pumping
 Sverdrup transport
 Sverdrup meets Ekman

Wind driven circulation
Western boundary currents

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\boldsymbol{\nabla}_{h} p+\frac{\partial \boldsymbol{\tau}}{\partial z}+A_{h} \boldsymbol{\nabla}_{h}^{2} \boldsymbol{u}-R \boldsymbol{u}
$$

with stress vector $\boldsymbol{\tau}$ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_{h} and with turbulent Rayleigh (bottom) friction related to R

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\nabla_{h} p+\frac{\partial \boldsymbol{\tau}}{\partial z}+A_{h} \boldsymbol{\nabla}_{h}^{2} \boldsymbol{u}-R \boldsymbol{u}
$$

with stress vector $\boldsymbol{\tau}$ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_{h} and with turbulent Rayleigh (bottom) friction related to R

- vertically integrating from flat bottom to surface (assume $\boldsymbol{\tau}_{b}=0$)

$$
f \boldsymbol{k} \times \int_{-h}^{0} \boldsymbol{u} d z=-\int_{-h}^{0} \nabla_{h} p d z+\boldsymbol{\tau}_{a}+\int_{-h}^{0}\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{u} d z
$$

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\nabla_{h} p+\frac{\partial \boldsymbol{\tau}}{\partial z}+A_{h} \boldsymbol{\nabla}_{h}^{2} \boldsymbol{u}-R \boldsymbol{u}
$$

with stress vector $\boldsymbol{\tau}$ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_{h} and with turbulent Rayleigh (bottom) friction related to R

- vertically integrating from flat bottom to surface (assume $\boldsymbol{\tau}_{b}=0$)

$$
f \boldsymbol{k} \times \int_{-h}^{0} \boldsymbol{u} d z=-\int_{-h}^{0} \nabla_{h} p d z+\boldsymbol{\tau}_{a}+\int_{-h}^{0}\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{u} d z
$$

- for $h=$ const vertical integration and ∇ commute

$$
f \boldsymbol{k} \times \boldsymbol{U}=-\boldsymbol{\nabla}_{h} \int_{-h}^{0} p d z+\boldsymbol{\tau}_{a}+\left(A_{h} \boldsymbol{\nabla}_{h}^{2}-R\right) \boldsymbol{U}
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$

- momentum equation in planetary geostrophic approximation

$$
f \boldsymbol{k} \times \boldsymbol{u}=-\nabla_{h} p+\frac{\partial \boldsymbol{\tau}}{\partial z}+A_{h} \boldsymbol{\nabla}_{h}^{2} \boldsymbol{u}-R \boldsymbol{u}
$$

with stress vector $\boldsymbol{\tau}$ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_{h} and with turbulent Rayleigh (bottom) friction related to R

- vertically integrating from flat bottom to surface (assume $\boldsymbol{\tau}_{b}=0$)

$$
f \boldsymbol{k} \times \int_{-h}^{0} \boldsymbol{u} d z=-\int_{-h}^{0} \nabla_{h} p d z+\boldsymbol{\tau}_{a}+\int_{-h}^{0}\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{u} d z
$$

- for $h=$ const vertical integration and ∇ commute

$$
f \boldsymbol{k} \times \boldsymbol{U}=-\boldsymbol{\nabla}_{h} \int_{-h}^{0} p d z+\boldsymbol{\tau}_{a}+\left(A_{h} \boldsymbol{\nabla}_{h}^{2}-R\right) \boldsymbol{U}
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$

- use transport streamfunction ψ with $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

- vertically integrated momentum equation

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u d z}$ and streamfunction $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

- vertically integrated momentum equation

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$ and streamfunction $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

- now take curl $(\boldsymbol{k} \times \nabla)$. of momentum equation

$$
-(\boldsymbol{k} \times \nabla) \cdot f \nabla_{h} \psi=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \nabla_{h}^{2}-R\right)(\boldsymbol{k} \times \nabla) \cdot(\boldsymbol{k} \times \nabla) \psi
$$

since $(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \nabla_{h} \int_{-h}^{0} p d z=0$

- vertically integrated momentum equation

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$ and streamfunction $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

- now take curl $(\boldsymbol{k} \times \nabla)$. of momentum equation

$$
-(\boldsymbol{k} \times \nabla) \cdot f \nabla_{h} \psi=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \nabla_{h}^{2}-R\right)(\boldsymbol{k} \times \nabla) \cdot(\boldsymbol{k} \times \nabla) \psi
$$

$$
\text { since }(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \boldsymbol{\nabla}_{h} \int_{-h}^{0} p d z=0
$$

- with

$$
-(\boldsymbol{k} \times \nabla) \cdot f \nabla_{h} \psi=-f(\boldsymbol{k} \times \nabla) \cdot \nabla_{h} \psi-\nabla_{h} \psi \cdot(\boldsymbol{k} \times \nabla) f=
$$

- vertically integrated momentum equation

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$ and streamfunction $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

- now take curl $(\boldsymbol{k} \times \nabla)$. of momentum equation

$$
-(\boldsymbol{k} \times \nabla) \cdot f \nabla_{h} \psi=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \nabla_{h}^{2}-R\right)(\boldsymbol{k} \times \nabla) \cdot(\boldsymbol{k} \times \nabla) \psi
$$

$$
\text { since }(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \boldsymbol{\nabla}_{h} \int_{-h}^{0} p d z=0
$$

- with

$$
-(k \times \nabla) \cdot f \nabla_{h} \psi=-f(k \times \nabla) \cdot \nabla_{h} \psi-\nabla_{h} \psi \cdot(k \times \nabla) f=\beta \frac{\partial \psi}{\partial x}
$$

- vertically integrated momentum equation

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$ and streamfunction $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

- now take curl $(\boldsymbol{k} \times \nabla)$. of momentum equation
$-(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot f \boldsymbol{\nabla}_{h} \psi=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \boldsymbol{\nabla}_{h}^{2}-R\right)(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot(\boldsymbol{k} \times \boldsymbol{\nabla}) \psi$ since $(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \nabla_{h} \int_{-h}^{0} p d z=0$
- with
$-(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot f \nabla_{h} \psi=-f(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \nabla_{h} \psi-\nabla_{h} \psi \cdot(\boldsymbol{k} \times \nabla) f=\beta \frac{\partial \psi}{\partial x}$
and with $(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot(\boldsymbol{k} \times \boldsymbol{\nabla}) \psi=\boldsymbol{\nabla}_{h}^{2} \psi$
- vertically integrated momentum equation

$$
-f \nabla_{h} \psi=-\nabla_{h} \int_{-h}^{0} p d z+\tau_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \boldsymbol{k} \times \nabla \psi
$$

with transport $\boldsymbol{U}=\int_{-h}^{0} \boldsymbol{u} d z$ and streamfunction $\boldsymbol{U}=\boldsymbol{k} \times \boldsymbol{\nabla} \psi$

- now take curl $(\boldsymbol{k} \times \nabla)$. of momentum equation
$-(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot f \boldsymbol{\nabla}_{h} \psi=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \boldsymbol{\nabla}_{h}^{2}-R\right)(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot(\boldsymbol{k} \times \boldsymbol{\nabla}) \psi$ since $(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \nabla_{h} \int_{-h}^{0} p d z=0$
- with
$-(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot f \nabla_{h} \psi=-f(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot \nabla_{h} \psi-\nabla_{h} \psi \cdot(\boldsymbol{k} \times \nabla) f=\beta \frac{\partial \psi}{\partial x}$
and with $(\boldsymbol{k} \times \boldsymbol{\nabla}) \cdot(\boldsymbol{k} \times \boldsymbol{\nabla}) \psi=\nabla_{h}^{2} \psi$
- the Stommel/Munk equation for flat bottom follows as

$$
\beta \frac{\partial \psi}{\partial x}=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \nabla_{h}^{2}-R\right) \nabla_{h}^{2} \psi
$$

first part identical to Sverdrup relation, friction related to A_{h} and R closes circulation at western boundary

- numerical solution of Stommel's equation

$$
\beta \frac{\partial \psi}{\partial x}=\boldsymbol{k} \times \nabla \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi
$$

with realistic wind stress $\tau_{a}\left(\right.$ and $\left.A_{h}=0\right)$

- Henry Melson Stommel, * 1920 in Wilmington (USA) $\dagger 1992$ in Boston (USA), oceanographer.
- consider a wind stress of the form $\tau_{a}=\left(-\tau_{0} \cos \frac{\pi y}{B}, 0\right)$
with $A_{h}=0 \rightarrow$ Stommel's equation (left)
and $R=0 \rightarrow$ Munk's equation (right)

- boundary layer scaling

$$
\beta \frac{\partial \psi}{\partial x}=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \boldsymbol{\nabla}_{h}^{2}-R\right) \nabla_{h}^{2} \psi
$$

- balance bottom friction $R \nabla_{h}^{2} \psi$ and planetary vorticity $\beta \partial \psi / \partial x$

$$
\begin{aligned}
\beta \psi / L & \sim R \psi / L^{2} \\
L & \sim R / \beta
\end{aligned}
$$

Stommel's boundary layer with $R / \beta \approx 50-100 \mathrm{~km}$

- boundary layer scaling

$$
\beta \frac{\partial \psi}{\partial x}=\boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}+\left(A_{h} \boldsymbol{\nabla}_{h}^{2}-R\right) \boldsymbol{\nabla}_{h}^{2} \psi
$$

- balance bottom friction $R \nabla_{h}^{2} \psi$ and planetary vorticity $\beta \partial \psi / \partial x$

$$
\begin{aligned}
\beta \psi / L & \sim R \psi / L^{2} \\
L & \sim R / \beta
\end{aligned}
$$

Stommel's boundary layer with $R / \beta \approx 50-100 \mathrm{~km}$

- balance lateral friction $A_{h} \boldsymbol{\nabla}_{h}^{4} \psi$ and planetary vorticity $\beta \partial \psi / \partial x$

$$
\begin{aligned}
\beta \psi / L & \sim A_{h} \psi / L^{4} \\
L & \sim\left(A_{h} / \beta\right)^{1 / 3}
\end{aligned}
$$

Munk's boundary layer with $\left(A_{h} / \beta\right)^{1 / 3}$

- $\left(A_{h} / \beta\right)^{1 / 3}$ is often used to choose value for A_{h} in numerical models
- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \nabla \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- since $V<0$ in the interior of the subtropical gyre
$V>0$ in the western boundary $\rightarrow \beta V>0 \rightarrow R \partial V / \partial x<0$
- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- since $V<0$ in the interior of the subtropical gyre
$V>0$ in the western boundary $\rightarrow \beta V>0 \rightarrow R \partial V / \partial x<0$
- for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x<0$
- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- since $V<0$ in the interior of the subtropical gyre
$V>0$ in the western boundary $\rightarrow \beta V>0 \rightarrow R \partial V / \partial x<0$
- for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x<0$
- for eastern boundary layer V increases to the east
\rightarrow no eastern boundary layer
- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- since $V<0$ in the interior of the subtropical gyre
$V>0$ in the western boundary $\rightarrow \beta V>0 \rightarrow R \partial V / \partial x<0$
- for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x<0$
- for eastern boundary layer V increases to the east
\rightarrow no eastern boundary layer
- westward Rossby waves propagate to the west
- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- since $V<0$ in the interior of the subtropical gyre
$V>0$ in the western boundary $\rightarrow \beta V>0 \rightarrow R \partial V / \partial x<0$
- for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x<0$
- for eastern boundary layer V increases to the east
\rightarrow no eastern boundary layer
- westward Rossby waves propagate to the west
- they are reflected at the western boundary as short Rossby waves with eastward group velocity
- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$
\beta \frac{\partial \psi}{\partial x}=\beta V \approx \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a}-R \nabla_{h}^{2} \psi \approx-R \frac{\partial^{2} \psi}{\partial x^{2}}=-R \frac{\partial V}{\partial x}
$$

between bottom friction and change in planetary vorticity

- since $V<0$ in the interior of the subtropical gyre
$V>0$ in the western boundary $\rightarrow \beta V>0 \rightarrow R \partial V / \partial x<0$
- for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x<0$
- for eastern boundary layer V increases to the east
\rightarrow no eastern boundary layer
- westward Rossby waves propagate to the west
- they are reflected at the western boundary as short Rossby waves with eastward group velocity
- short Rossby waves are dissipated in the west and form the boundary current

- Schematic of the near-surface circulation (after Schmitz 1996). Subtropical gyres are red, subpolar and polar gyres blue equatorial gyres magenta, Antarctic Circumpolar Current is blue green lines represent exchange between basins and gyres

