Dynamische und regionale Ozeanographie WS 2014/15

Carsten Eden und Detlef Quadfasel

Institut für Meereskunde, Universität Hamburg

June 30, 2015

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lecture # 9

Recapitulation

Elementarstromsystem Ekman transport Ekman pumping Sverdrup transport Sverdrup meets Ekman

Wind driven circulation

Western boundary currents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

oral examination Tuesday July 7., 2015

- 13:00 Tabea Kilchling
- 13:30 Isabell Hochfeld
- 14:00 Lucas Schmidt
- 14:30 Annika Buck
- 15:00 Elena Hirschhoff
- 15:30 Heninng Dorff
- 16:00 Jerome Sauer
- ► 16:30 Carolin Meier ?
- 17:00 Sophie Specht ?
- ▶ 17:30 Anna Wünsche ?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Recapitulation

 Schematic of the near-surface circulation (after Schmitz 1996).
 Subtropical gyres are red, subpolar and polar gyres blue equatorial gyres magenta, Antarctic Circumpolar Current is blue green lines represent exchange between basins and gyres

Recapitulation

Elementarstromsystem

Ekman transport Ekman pumping Sverdrup transport Sverdrup meets Ekman

Wind driven circulation

Western boundary currents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 \blacktriangleright momentum equation in vector form for $\mathit{Ro} \ll 1$

$$f \boldsymbol{k} \times \boldsymbol{u} = -\frac{1}{\rho_0} \boldsymbol{\nabla}_h \boldsymbol{p} + \frac{1}{\rho_0} \frac{\partial \boldsymbol{\tau}}{\partial z} \text{ with } \boldsymbol{k} \times \boldsymbol{u} = (-v, u, \emptyset)$$

τ = (τ^x, τ^y) is a stress vector with τ(z = 0) = τ^a where τ^a is the surface wind stress in N/m² acting on the ocean

 \blacktriangleright momentum equation in vector form for $\mathit{Ro} \ll 1$

$$f \mathbf{k} \times \mathbf{u} = -\frac{1}{\rho_0} \nabla_h \rho + \frac{1}{\rho_0} \frac{\partial \tau}{\partial z}$$
 with $\mathbf{k} \times \mathbf{u} = (-v, u, \emptyset)$

- τ = (τ^x, τ^y) is a stress vector with τ(z = 0) = τ^a where τ^a is the surface wind stress in N/m² acting on the ocean
- ▶ split the flow into geostrophic and frictional (Ekman) components, $u = u_G + u_E$ (and $w = w_G + w_E$), governed by

$$f \mathbf{k} \times \mathbf{u}_G = -\frac{1}{\rho_0} \nabla_h p$$
 and $f \mathbf{k} \times \mathbf{u}_E = \frac{1}{\rho_0} \frac{\partial \tau}{\partial z}$

and the same for continuity equation

$$\nabla \cdot \boldsymbol{u}_G + \frac{\partial w_G}{\partial z} = 0$$
 and $\nabla \cdot \boldsymbol{u}_E + \frac{\partial w_E}{\partial z} = 0$

• sum $u_G + u_E$ satisfies full momentum and continuity equation

• Elementarstromsystem (for $\rho = const$)

•
$$\boldsymbol{u} = \boldsymbol{u}_G + \boldsymbol{u}_E$$
 (and $w = w_G + w_E$)

surface and bottom Ekman layers superimposed on geostrophic flow

Recapitulation

Elementarstromsystem

Ekman transport

Ekman pumping Sverdrup transport Sverdrup meets Ekman

Wind driven circulation

Western boundary currents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<□ > < @ > < E > < E > E のQ @

vertically integrated velocity

$$\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} \, dz = \int_{-h}^{0} (\boldsymbol{u}_{G} + \boldsymbol{u}_{E}) \, dz = \boldsymbol{U}_{G} + \boldsymbol{U}_{E}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

vertically integrated velocity

$$\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} \, dz = \int_{-h}^{0} (\boldsymbol{u}_{G} + \boldsymbol{u}_{E}) \, dz = \boldsymbol{U}_{G} + \boldsymbol{U}_{E}$$

• with the (total) transport vector ${\pmb U}$, dimension ${
m m}^2{
m s}^{-1}$

vertically integrated velocity

$$\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} \, dz = \int_{-h}^{0} (\boldsymbol{u}_{G} + \boldsymbol{u}_{E}) \, dz = \boldsymbol{U}_{G} + \boldsymbol{U}_{E}$$

- with the (total) transport vector $m{U}$, dimension $\mathrm{m}^2\mathrm{s}^{-1}$
- ► transport by the geostrophic velocity \rightarrow geostrophic transport U_G transport by the Ekman velocity \rightarrow Ekman transport U_E

$$f \mathbf{k} \times \mathbf{u}_E = \frac{1}{\rho_0} \frac{\partial \boldsymbol{\tau}}{\partial z}$$

vertically integrated velocity

$$\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} \, dz = \int_{-h}^{0} (\boldsymbol{u}_{G} + \boldsymbol{u}_{E}) \, dz = \boldsymbol{U}_{G} + \boldsymbol{U}_{E}$$

- \blacktriangleright with the (total) transport vector $m{U}$, dimension $\mathrm{m^2 s^{-1}}$
- ► transport by the geostrophic velocity → geostrophic transport U_G transport by the Ekman velocity → Ekman transport U_E

$$f \mathbf{k} \times \mathbf{u}_{E} = \frac{1}{\rho_{0}} \frac{\partial \tau}{\partial z}$$
$$f \mathbf{k} \times \int_{-h}^{0} \mathbf{u}_{E} dz = \frac{1}{\rho_{0}} \left(\tau(z=0) - \tau(z=-h) \right)$$

vertically integrated velocity

$$\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} \, dz = \int_{-h}^{0} (\boldsymbol{u}_{G} + \boldsymbol{u}_{E}) \, dz = \boldsymbol{U}_{G} + \boldsymbol{U}_{E}$$

- with the (total) transport vector $m{U}$, dimension $\mathrm{m^2 s^{-1}}$
- ► transport by the geostrophic velocity → geostrophic transport U_G transport by the Ekman velocity → Ekman transport U_E

$$f \mathbf{k} \times \mathbf{u}_{E} = \frac{1}{\rho_{0}} \frac{\partial \tau}{\partial z}$$

$$f \mathbf{k} \times \int_{-h}^{0} \mathbf{u}_{E} dz = \frac{1}{\rho_{0}} (\tau(z=0) - \tau(z=-h))$$

$$f \mathbf{k} \times \mathbf{U}_{E} = \frac{1}{\rho_{0}} (\tau^{a} - \tau_{b})$$

$$\mathbf{U}_{E} = -\frac{1}{f\rho_{0}} \mathbf{k} \times (\tau^{a} - \tau_{b})$$

with surface wind stress au^a and bottom stress au_b

vertically integrated velocity

$$\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} \, dz = \int_{-h}^{0} (\boldsymbol{u}_{G} + \boldsymbol{u}_{E}) \, dz = \boldsymbol{U}_{G} + \boldsymbol{U}_{E}$$

- with the (total) transport vector $m{U}$, dimension $\mathrm{m}^2\mathrm{s}^{-1}$
- ► transport by the geostrophic velocity \rightarrow geostrophic transport U_G transport by the Ekman velocity \rightarrow Ekman transport U_E

$$f \mathbf{k} \times \mathbf{u}_{E} = \frac{1}{\rho_{0}} \frac{\partial \tau}{\partial z}$$

$$f \mathbf{k} \times \int_{-h}^{0} \mathbf{u}_{E} dz = \frac{1}{\rho_{0}} (\tau(z=0) - \tau(z=-h))$$

$$f \mathbf{k} \times \mathbf{U}_{E} = \frac{1}{\rho_{0}} (\tau^{a} - \tau_{b})$$

$$\mathbf{U}_{E} = -\frac{1}{f \rho_{0}} \mathbf{k} \times (\tau^{a} - \tau_{b})$$

with surface wind stress au^a and bottom stress au_b

► split U_E into surface and bottom Ekman transport

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 vertically integrated velocity U = U_G + U_E with geostrophic transport U_G and Ekman transport U_E given by

$$oldsymbol{U}_E = -rac{1}{f
ho_0}oldsymbol{k} imes(oldsymbol{ au}^{\,oldsymbol{s}}-oldsymbol{ au}_b)$$

with surface wind stress au^a and bottom stress au_b

vertically integrated velocity U = U_G + U_E with geostrophic transport U_G and Ekman transport U_E given by

$$oldsymbol{U}_E = -rac{1}{f
ho_0}oldsymbol{k} imes(oldsymbol{ au}^a-oldsymbol{ au}_b)\equivoldsymbol{U}_E^{top}+oldsymbol{U}_E^{bot}$$

with surface wind stress au^a and bottom stress au_b

split into surface Ekman transport in surface Ekman layer

$$oldsymbol{U}_{E}^{top}=-rac{1}{f
ho_{0}}oldsymbol{k} imesoldsymbol{ au}^{a}$$

orthogonal to wind stress direction (to the right for f > 0) does not depend on parameterisation of τ in the interior vertically integrated velocity U = U_G + U_E with geostrophic transport U_G and Ekman transport U_E given by

$$oldsymbol{U}_E = -rac{1}{f
ho_0}oldsymbol{k} imes(oldsymbol{ au}^a-oldsymbol{ au}_b)\equivoldsymbol{U}_E^{top}+oldsymbol{U}_E^{bot}$$

with surface wind stress au^a and bottom stress au_b

split into surface Ekman transport in surface Ekman layer

$$oldsymbol{U}_{E}^{top}=-rac{1}{f
ho_{0}}oldsymbol{k} imesoldsymbol{ au}^{a}$$

orthogonal to wind stress direction (to the right for f > 0) does not depend on parameterisation of τ in the interior

and bottom Ekman transport in bottom Ekman layer

$$oldsymbol{U}_E^{bot} = rac{1}{f
ho_0}oldsymbol{k} imesoldsymbol{ au}_b$$

depends on parameterisation of au in the interior

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

•
$$\boldsymbol{u} = \boldsymbol{u}_G + \boldsymbol{u}_E$$
 (and $w = w_G + w_E$)

surface and bottom Ekman layers superimposed on geostrophic flow

surface Ekman transport in surface Ekman layer

$$oldsymbol{U}_{E}^{top}=-rac{1}{f
ho_{0}}oldsymbol{k} imesoldsymbol{ au}^{st}$$

(日) (同) (日) (日)

ъ

orthogonal to wind stress direction (to the right for f > 0)

surface Ekman transport in surface Ekman layer

$$oldsymbol{U}_{E}^{top}=-rac{1}{f
ho_{0}}oldsymbol{k} imesoldsymbol{ au}^{a}$$

orthogonal to wind stress direction (to the right for f > 0)

equatorward in west wind region poleward in trade wind region

surface Ekman transport in surface Ekman layer

$$oldsymbol{U}_{E}^{top}=-rac{1}{f
ho_{0}}oldsymbol{k} imesoldsymbol{ au}^{a}$$

orthogonal to wind stress direction (to the right for f > 0)

equatorward in west wind region poleward in trade wind region

・ロト ・ 一下・ ・ ヨト ・ ヨト

- convergence between west wind and trade wind region
- divergence at high latitude and at equator

Recapitulation

Elementarstromsystem Ekman transport Ekman pumping Sverdrup transport

Wind driven circulation

Western boundary currents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

▶ integrating the continuity equation for u_E and w_E from z to z = 0

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}_{E}+rac{\partial w_{E}}{\partial z}=0$$

yields the vertical Ekman velocity

$$\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} \, dz + \underline{w_{E}(z=0)} - w_{E}(z) = 0 \quad \rightarrow \quad w_{E}(z) = \nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} \, dz$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

▶ integrating the continuity equation for u_E and w_E from z to z = 0

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}_{E}+rac{\partial w_{E}}{\partial z}=0$$

yields the vertical Ekman velocity

$$\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} \, dz + \underline{w_{E}(z=0)} - w_{E}(z) = 0 \quad \rightarrow \quad w_{E}(z) = \nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} \, dz$$

• integrating the continuity equation for u_E and w_E from z to z = 0

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}_{E}+rac{\partial w_{E}}{\partial z}=0$$

yields the vertical Ekman velocity

$$\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} \, dz + \underline{w}_{E}(z=0) - w_{E}(z) = 0 \quad \rightarrow \quad w_{E}(z) = \nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} \, dz$$

• since $\boldsymbol{u}_E \approx 0$ below Ekman depth $D \approx 50 \,\mathrm{m}$

$$w_E|_{z<-D} pprox oldsymbol{
abla} \cdot \int_{z<-D}^0 oldsymbol{u}_E \,\,dz = oldsymbol{
abla} \cdot oldsymbol{U}_E^{top} = -oldsymbol{
abla} \cdot rac{1}{f
ho_0} oldsymbol{k} imes oldsymbol{ au}^a$$

with Ekman pumping $w_E|_{z < -D}$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

• integrating the continuity equation for \boldsymbol{u}_E and \boldsymbol{w}_E from z to z = 0

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}_{E}+rac{\partial w_{E}}{\partial z}=0$$

yields the vertical Ekman velocity

$$\int_{z}^{0} \nabla \cdot \boldsymbol{u}_{E} \, dz + \underline{w}_{E}(z=0) - w_{E}(z) = 0 \quad \rightarrow \quad w_{E}(z) = \nabla \cdot \int_{z}^{0} \boldsymbol{u}_{E} \, dz$$

• since $\boldsymbol{u}_E \approx 0$ below Ekman depth $D \approx 50 \,\mathrm{m}$

$$w_E|_{z<-D} \approx \boldsymbol{\nabla} \cdot \int_{z<-D}^{0} \boldsymbol{u}_E \ dz = \boldsymbol{\nabla} \cdot \boldsymbol{U}_E^{top} = -\boldsymbol{\nabla} \cdot \frac{1}{f\rho_0} \boldsymbol{k} \times \boldsymbol{\tau}^a = \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \frac{\boldsymbol{\tau}^a}{\rho_0 f}$$

with Ekman pumping $w_E|_{z < -D}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

• Ekman pumping w_E in m per year

$$w_E|_{z<-D} pprox oldsymbol{
abla} \cdot oldsymbol{U}_E^{top} = oldsymbol{k} imes oldsymbol{
abla} \cdot oldsymbol{ abla}^a$$

with Ekman depth $D \approx 50 \,\mathrm{m}$ (depends on A_{ν})

• Ekman transport \boldsymbol{U}_{E}^{top} and pumping w_{E} do not depend on A_{v}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

coastal upwelling

from Talley et al 2011

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

from Talley et al 2011

Recapitulation

Elementarstromsystem Ekman transport Ekman pumping Sverdrup transport

Wind driven circulation

Western boundary currents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<□ > < @ > < E > < E > E のQ @

momentum equation in planetary geostrophic approximation

$$f \mathbf{k} \times \mathbf{u} = -\frac{1}{\rho_0} \nabla_h p + \frac{1}{\rho_0} \frac{\partial \tau}{\partial z}$$
 with $\mathbf{k} \times \mathbf{u} = (-v, u, 0)$

momentum equation in planetary geostrophic approximation

$$f \mathbf{k} \times \mathbf{u} = -\frac{1}{\rho_0} \nabla_h p + \frac{1}{\rho_0} \frac{\partial \tau}{\partial z}$$
 with $\mathbf{k} \times \mathbf{u} = (-v, u, 0)$

- ▶ neglect sea surface height $z = \zeta \rightarrow$ assume rigid lid at z = 0
- assume flat bottom at z = -h = const
- vertically integrate from bottom to surface

$$ho_0 f m{k} imes m{U} = - m{
abla}_h \int_{-h}^0 p dz + m{ au}_a - m{ au}_b$$

with transport $m{U}=\int_{-h}^{0}m{u}dz$, surface and bottom stress $m{ au}_{a}$ and $m{ au}_{b}$

momentum equation in planetary geostrophic approximation

$$f \mathbf{k} \times \mathbf{u} = -\frac{1}{\rho_0} \nabla_h p + \frac{1}{\rho_0} \frac{\partial \tau}{\partial z}$$
 with $\mathbf{k} \times \mathbf{u} = (-v, u, 0)$

- ▶ neglect sea surface height $z = \zeta \rightarrow$ assume rigid lid at z = 0
- assume flat bottom at z = -h = const
- vertically integrate from bottom to surface

$$ho_0 f m{k} imes m{U} = - m{
abla}_h \int_{-h}^0 p dz + m{ au}_a - m{ au}_b$$

with transport $m{U}=\int_{-h}^{0}m{u}dz$, surface and bottom stress $m{ au}_{a}$ and $m{ au}_{b}$

take curl and it follows the famous Sverdrup relation

$$ho_0 eta V = \mathbf{k} imes \mathbf{\nabla} \cdot (\boldsymbol{\tau}_a - \boldsymbol{\tau}_b)$$

where $\boldsymbol{\tau}_b$ is often neglected

depth integrated transport V calculated from wind stress curl only

• since $\nabla_h \cdot \boldsymbol{U} = 0$ introduce volume transport streamfunction, with

$$U = -\frac{\partial \psi}{\partial y}$$
, $V = \frac{\partial \psi}{\partial x} \rightarrow U = \mathbf{k} \times \nabla \psi$

transport \boldsymbol{U} is parallel to contour lines of ψ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• since $\nabla_h \cdot \boldsymbol{U} = 0$ introduce volume transport streamfunction, with

$$U = -\frac{\partial \psi}{\partial y}$$
, $V = \frac{\partial \psi}{\partial x} \rightarrow U = \mathbf{k} \times \nabla \psi$

transport \pmb{U} is parallel to contour lines of ψ

• ψ determines transport perpendicular to or "across" section $A \rightarrow B$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
• since $\nabla_h \cdot \boldsymbol{U} = 0$ introduce volume transport streamfunction, with

$$U = -\frac{\partial \psi}{\partial y}$$
, $V = \frac{\partial \psi}{\partial x} \rightarrow U = \mathbf{k} \times \nabla \psi$

transport \pmb{U} is parallel to contour lines of ψ

- ▶ ψ determines transport perpendicular to or "across" section $A \rightarrow B$
- Sverdrup relation becomes

$$ho_0 eta \, {m V} =
ho_0 eta rac{\partial \psi}{\partial x} = {m k} imes {m
abla} \cdot {m au}_{m a}$$

for $\boldsymbol{\tau}_b = 0$

• since $\nabla_h \cdot \boldsymbol{U} = 0$ introduce volume transport streamfunction, with

$$U = -\frac{\partial \psi}{\partial y}$$
, $V = \frac{\partial \psi}{\partial x} \rightarrow U = \mathbf{k} \times \nabla \psi$

transport \pmb{U} is parallel to contour lines of ψ

- ▶ ψ determines transport perpendicular to or "across" section $A \rightarrow B$
- Sverdrup relation becomes

$$ho_0eta\, m{V}=
ho_0etarac{\partial\psi}{\partial x}=m{k} imesm{
abla}\cdotm{ au}_a$$

for $\boldsymbol{\tau}_b = 0$

▶ integration from eastern boundary $(x = x_E)$ where $\psi(x_E) = 0$

$$\psi(x,y) = -\frac{1}{\rho_0\beta}\int_x^{x_e} \mathbf{k} \times \nabla \cdot \boldsymbol{\tau}_a \, dx$$

ψ(x_E) = 0 along east eastern boundary but not at western boundary
 → western boundary current not included

► $\psi = -1/(\rho_0\beta) \int_x^{x_e} \mathbf{k} \times \nabla \cdot \tau^a \, dx$ from realistic wind stress in 10⁶ m³/s ≡ 1 Sv

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

• ψ in a global state estimate in $10^6 \,\mathrm{m^3/s} \equiv 1 \,\mathrm{Sv}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 \blacktriangleright Streamfunction ψ for a realistic model of the Atlantic Ocean

simple Sverdrup relation works surprisingly well

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

24/36

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recapitulation

Elementarstromsystem Ekman transport Ekman pumping Sverdrup transport Sverdrup meets Ekman

Wind driven circulation

Western boundary currents

vertically integrated momentum equation

$$-\rho_0 fV = -\frac{\partial}{\partial x} \int_{-h}^{0} p dz + \tau_a^x \equiv -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 fU = -\frac{\partial}{\partial y} \int_{-h}^{0} p dz + \tau_a^y \equiv -\frac{\partial P}{\partial y} + \tau_a^y$$

vertically integrated momentum equation

$$-\rho_0 fV = -\frac{\partial}{\partial x} \int_{-h}^{0} p dz + \tau_a^x \equiv -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 fU = -\frac{\partial}{\partial y} \int_{-h}^{0} p dz + \tau_a^y \equiv -\frac{\partial P}{\partial y} + \tau_a^y$$

▶ split in Ekman transport U_E und geostrophic transport U_G

$$\begin{aligned} -\rho_0 f V &\equiv -\rho_0 f \left(V_G + V_E \right) &= -\frac{\partial P}{\partial x} + \tau_a^x \\ \rho_0 f U &\equiv \rho_0 f \left(U_G + U_E \right) &= -\frac{\partial P}{\partial y} + \tau_a^y \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

vertically integrated momentum equation

$$-\rho_0 fV = -\frac{\partial}{\partial x} \int_{-h}^{0} p dz + \tau_a^x \equiv -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 fU = -\frac{\partial}{\partial y} \int_{-h}^{0} p dz + \tau_a^y \equiv -\frac{\partial P}{\partial y} + \tau_a^y$$

▶ split in Ekman transport U_E und geostrophic transport U_G

$$-\rho_0 f V \equiv -\rho_0 f \left(V_G + V_E \right) = -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 f U \equiv \rho_0 f \left(U_G + U_E \right) = -\frac{\partial P}{\partial y} + \tau_a^y$$

with Ekman transport

_

$$-\rho_0 f V_E = \tau_a^{\mathsf{x}} , \ \rho_0 f U_E = \tau_a^{\mathsf{y}} \ \rightarrow \ \rho_0 f \, \mathbf{k} \times \mathbf{U}_E = \mathbf{\tau}_a \ \rightarrow \ \rho_0 f \, \mathbf{U}_E = -\mathbf{k} \times \mathbf{\tau}_a$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

vertically integrated momentum equation

$$-\rho_0 fV = -\frac{\partial}{\partial x} \int_{-h}^{0} p dz + \tau_a^x \equiv -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 fU = -\frac{\partial}{\partial y} \int_{-h}^{0} p dz + \tau_a^y \equiv -\frac{\partial P}{\partial y} + \tau_a^y$$

▶ split in Ekman transport U_E und geostrophic transport U_G

$$-\rho_0 f V \equiv -\rho_0 f \left(V_G + V_E \right) = -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 f U \equiv \rho_0 f \left(U_G + U_E \right) = -\frac{\partial P}{\partial y} + \tau_a^y$$

with Ekman transport

$$-\rho_0 f V_E = \tau_a^x , \ \rho_0 f U_E = \tau_a^y \ \rightarrow \ \rho_0 f \, \boldsymbol{k} \times \boldsymbol{U}_E = \boldsymbol{\tau}_a \ \rightarrow \ \rho_0 f \, \boldsymbol{U}_E = -\boldsymbol{k} \times \boldsymbol{\tau}_a$$

and with geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} , \ \rho_0 f U_G = -\frac{\partial P}{\partial y} \rightarrow \rho_0 f U_G = \mathbf{k} \times \nabla_h P$$

$$-\rho_0 fV = -\frac{\partial}{\partial x} \int_{-h}^{0} p dz + \tau_a^x \equiv -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 fU = -\frac{\partial}{\partial y} \int_{-h}^{0} p dz + \tau_a^y \equiv -\frac{\partial P}{\partial y} + \tau_a^y$$

▶ split in Ekman transport U_E und geostrophic transport U_G

$$-\rho_0 f V \equiv -\rho_0 f \left(V_G + V_E \right) = -\frac{\partial P}{\partial x} + \tau_a^x$$
$$\rho_0 f U \equiv \rho_0 f \left(U_G + U_E \right) = -\frac{\partial P}{\partial y} + \tau_a^y$$

with Ekman transport

$$-\rho_0 f V_E = \tau_a^{\mathsf{x}} \ , \ \rho_0 f U_E = \tau_a^{\mathsf{y}} \ \to \ \rho_0 f \, \mathbf{k} \times \mathbf{U}_E = \mathbf{\tau}_a \ \to \ \rho_0 f \, \mathbf{U}_E = -\mathbf{k} \times \mathbf{\tau}_a$$

and with geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} , \ \rho_0 f U_G = -\frac{\partial P}{\partial y} \rightarrow \rho_0 f U_G = \mathbf{k} \times \nabla_h P$$

Ekman transport + geostr. transport = Sverdrup transport

- Ekman transport + geostr. transport = Sverdrup transport
- with Ekman transport

$$-
ho_0 f V_E = au_a^x$$
, $ho_0 f U_E = au_a^y$, $ho_0 f U_E = -\mathbf{k} \times \boldsymbol{\tau}_a$

and geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} \quad , \quad \rho_0 f U_G = -\frac{\partial P}{\partial y} \quad , \quad \rho_0 f \, \boldsymbol{U}_G = \boldsymbol{k} \times \boldsymbol{\nabla}_h P$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ekman transport + geostr. transport = Sverdrup transport
- with Ekman transport

$$-
ho_0 f V_E = au_a^x$$
, $ho_0 f U_E = au_a^y$, $ho_0 f U_E = -\mathbf{k} imes \mathbf{\tau}_a$

and geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} \quad , \quad \rho_0 f U_G = -\frac{\partial P}{\partial y} \quad , \quad \rho_0 f \, \boldsymbol{U}_G = \boldsymbol{k} \times \boldsymbol{\nabla}_h P$$

$$\nabla_h \cdot \boldsymbol{U}_E = -\nabla_h \cdot \boldsymbol{k} imes rac{\boldsymbol{\tau}_a}{\rho_0 f} = \boldsymbol{k} imes \nabla_h \cdot rac{\boldsymbol{\tau}_a}{\rho_0 f} = w_E$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ekman transport + geostr. transport = Sverdrup transport
- with Ekman transport

$$-
ho_0 f V_E = au_a^{ imes}$$
, $ho_0 f U_E = au_a^{ imes}$, $ho_0 f U_E = -\mathbf{k} imes \mathbf{\tau}_a$

and geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} \quad , \quad \rho_0 f U_G = -\frac{\partial P}{\partial y} \quad , \quad \rho_0 f \, \boldsymbol{U}_G = \boldsymbol{k} \times \boldsymbol{\nabla}_h P$$

$$\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{E} = -\boldsymbol{\nabla}_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = \boldsymbol{k} \times \boldsymbol{\nabla}_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = w_{E}$$

$$\boldsymbol{\nabla}_{h} \cdot \boldsymbol{U}_{G} = -\frac{\partial}{\partial x} \left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0}f} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0}f} \right) = \frac{\partial P}{\partial x} \frac{\partial}{\partial y} \left(\frac{1}{\rho_{0}f} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ekman transport + geostr. transport = Sverdrup transport
- with Ekman transport

$$-
ho_0 f V_E = au_a^{ imes}$$
, $ho_0 f U_E = au_a^{ imes}$, $ho_0 f U_E = -\mathbf{k} imes \mathbf{\tau}_a$

and geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} \quad , \quad \rho_0 f U_G = -\frac{\partial P}{\partial y} \quad , \quad \rho_0 f \, \boldsymbol{U}_G = \boldsymbol{k} \times \boldsymbol{\nabla}_h P$$

$$\nabla_{h} \cdot \boldsymbol{U}_{E} = -\nabla_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = \boldsymbol{k} \times \nabla_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = w_{E}$$

$$\nabla_{h} \cdot \boldsymbol{U}_{G} = -\frac{\partial}{\partial x} \left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0}f} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0}f} \right) = \frac{\partial P}{\partial x} \frac{\partial}{\partial y} \left(\frac{1}{\rho_{0}f} \right)$$

$$= -\frac{1}{\rho_{0}f^{2}} \frac{df}{dy} \frac{\partial P}{\partial x} = -\frac{\beta}{\rho_{0}f^{2}} \frac{\partial P}{\partial x}$$

26/36

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ekman transport + geostr. transport = Sverdrup transport
- with Ekman transport

$$-
ho_0 f V_E = au_a^{ imes}$$
, $ho_0 f U_E = au_a^{ imes}$, $ho_0 f U_E = -\mathbf{k} imes \mathbf{\tau}_a$

and geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} \quad , \quad \rho_0 f U_G = -\frac{\partial P}{\partial y} \quad , \quad \rho_0 f \, \boldsymbol{U}_G = \boldsymbol{k} \times \boldsymbol{\nabla}_h P$$

$$\nabla_{h} \cdot \boldsymbol{U}_{E} = -\nabla_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = \boldsymbol{k} \times \nabla_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = w_{E}$$

$$\nabla_{h} \cdot \boldsymbol{U}_{G} = -\frac{\partial}{\partial x} \left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0}f} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0}f} \right) = \frac{\partial P}{\partial x} \frac{\partial}{\partial y} \left(\frac{1}{\rho_{0}f} \right)$$

$$= -\frac{1}{\rho_{0}f^{2}} \frac{df}{dy} \frac{\partial P}{\partial x} = -\frac{\beta}{\rho_{0}f^{2}} \frac{\partial P}{\partial x} = -\frac{\beta}{f} V_{G}$$

- Ekman transport + geostr. transport = Sverdrup transport
- with Ekman transport

$$-
ho_0 f V_E = au_a^{ imes}$$
, $ho_0 f U_E = au_a^{ imes}$, $ho_0 f U_E = -\mathbf{k} imes \mathbf{\tau}_a$

and geostrophic transport

$$-\rho_0 f V_G = -\frac{\partial P}{\partial x} \quad , \quad \rho_0 f U_G = -\frac{\partial P}{\partial y} \quad , \quad \rho_0 f \, \boldsymbol{U}_G = \boldsymbol{k} \times \boldsymbol{\nabla}_h P$$

both transports are divergent

$$\nabla_{h} \cdot \boldsymbol{U}_{E} = -\nabla_{h} \cdot \boldsymbol{k} \times \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = \boldsymbol{k} \times \nabla_{h} \cdot \frac{\boldsymbol{\tau}_{a}}{\rho_{0}f} = w_{E}$$

$$\nabla_{h} \cdot \boldsymbol{U}_{G} = -\frac{\partial}{\partial x} \left(\frac{\partial P}{\partial y} \frac{1}{\rho_{0}f} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial x} \frac{1}{\rho_{0}f} \right) = \frac{\partial P}{\partial x} \frac{\partial}{\partial y} \left(\frac{1}{\rho_{0}f} \right)$$

$$= -\frac{1}{\rho_{0}f^{2}} \frac{df}{dy} \frac{\partial P}{\partial x} = -\frac{\beta}{\rho_{0}f^{2}} \frac{\partial P}{\partial x} = -\frac{\beta}{f} V_{G}$$

• but the total transport $\boldsymbol{U} = \boldsymbol{U}_E + \boldsymbol{U}_G$ is non-divergent

$$oldsymbol{
abla}_h \cdot oldsymbol{U} = 0 \ \
ightarrow w_E^{top} = rac{eta}{f} V_G$$

Ekman pumping generates southward geostr. transport (for f > 0)

• Ekman pumping generates southward geostr. transport (for f > 0)

from Talley et al 2011

- Sverdrup relation follows from potential vorticity conservation
- potential vorticity equation for a single layer

$$rac{Dq}{Dt}=0~,~~q=rac{\zeta+f}{h}~~{
m or}~~qpprox \zeta-rac{f_0}{H}h+f$$

q is conserved for fluid parcels in single layer

▶ w_E lead to vortex stretching and meridional motion

Recapitulation

Elementarstromsystem Ekman transport Ekman pumping Sverdrup transport Sverdrup meets Ekman

Wind driven circulation Western boundary currents

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

momentum equation in planetary geostrophic approximation

$$f \mathbf{k} \times \mathbf{u} = -\nabla_h p + \frac{\partial \tau}{\partial z} + A_h \nabla_h^2 \mathbf{u} - R \mathbf{u}$$

with stress vector τ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_h and with turbulent Rayleigh (bottom) friction related to R

$$f \mathbf{k} \times \mathbf{u} = -\nabla_h p + \frac{\partial \tau}{\partial z} + A_h \nabla_h^2 \mathbf{u} - R \mathbf{u}$$

with stress vector τ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_h and with turbulent Rayleigh (bottom) friction related to R

• vertically integrating from flat bottom to surface (assume $au_b = 0$)

$$f\mathbf{k} \times \int_{-h}^{0} \mathbf{u} dz = -\int_{-h}^{0} \nabla_{h} p dz + \tau_{a} + \int_{-h}^{0} (A_{h} \nabla_{h}^{2} - R) \mathbf{u} dz$$

$$f \mathbf{k} \times \mathbf{u} = -\nabla_h p + \frac{\partial \tau}{\partial z} + A_h \nabla_h^2 \mathbf{u} - R \mathbf{u}$$

with stress vector τ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_h and with turbulent Rayleigh (bottom) friction related to R

vertically integrating from flat bottom to surface (assume $au_b = 0$)

$$f \mathbf{k} \times \int_{-h}^{0} \mathbf{u} dz = -\int_{-h}^{0} \nabla_{h} p dz + \boldsymbol{\tau}_{a} + \int_{-h}^{0} (A_{h} \nabla_{h}^{2} - R) \mathbf{u} dz$$

• for h = const vertical integration and ∇ commute

$$f \mathbf{k} \times \mathbf{U} = -\nabla_h \int_{-h}^0 p dz + \boldsymbol{\tau}_a + (A_h \nabla_h^2 - R) \mathbf{U}$$

with transport $\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} dz$

$$f \mathbf{k} \times \mathbf{u} = -\nabla_h p + \frac{\partial \tau}{\partial z} + A_h \nabla_h^2 \mathbf{u} - R \mathbf{u}$$

with stress vector τ connecting to surface wind stress with lateral friction related to the lateral turbulent viscosity A_h and with turbulent Rayleigh (bottom) friction related to R

vertically integrating from flat bottom to surface (assume $au_b = 0$)

$$f \mathbf{k} \times \int_{-h}^{0} \mathbf{u} dz = -\int_{-h}^{0} \nabla_{h} p dz + \boldsymbol{\tau}_{a} + \int_{-h}^{0} (A_{h} \nabla_{h}^{2} - R) \mathbf{u} dz$$

• for h = const vertical integration and ∇ commute

$$f \boldsymbol{k} \times \boldsymbol{U} = -\boldsymbol{\nabla}_h \int_{-h}^0 p dz + \boldsymbol{\tau}_a + (A_h \boldsymbol{\nabla}_h^2 - R) \boldsymbol{U}$$

with transport $\boldsymbol{U} = \int_{-h}^{0} \boldsymbol{u} dz$

• use transport streamfunction ψ with $\pmb{U} = \pmb{k} \times \pmb{\nabla} \psi$

$$-f\boldsymbol{\nabla}_{h}\psi = -\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz + \boldsymbol{\tau}_{a} + (A_{h}\boldsymbol{\nabla}_{h}^{2} - R)\boldsymbol{k} \times \boldsymbol{\nabla}\psi$$

$$-f \boldsymbol{\nabla}_h \psi = - \boldsymbol{\nabla}_h \int_{-h}^{0} p dz + \boldsymbol{\tau}_{s} + (A_h \boldsymbol{\nabla}_h^2 - R) \boldsymbol{k} imes \boldsymbol{\nabla} \psi$$

with transport $m{U} = \int_{-h}^{0} m{u} dz$ and streamfunction $m{U} = m{k} imes m{
abla} \psi$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$-f\boldsymbol{\nabla}_{h}\psi=-\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz+\boldsymbol{\tau}_{a}+(A_{h}\boldsymbol{\nabla}_{h}^{2}-R)\boldsymbol{k}\times\boldsymbol{\nabla}\psi$$

with transport $m{U} = \int_{-h}^{0} m{u} dz$ and streamfunction $m{U} = m{k} imes m{
abla} \psi$

▶ now take curl ($\pmb{k} imes \pmb{\nabla}$) · of momentum equation

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = \boldsymbol{k}\times\boldsymbol{\nabla}\cdot\boldsymbol{\tau}_{a} + (A_{h}\boldsymbol{\nabla}_{h}^{2} - R)(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})\psi$$

since $(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz = 0$

$$-f\boldsymbol{\nabla}_{h}\psi=-\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz+\boldsymbol{\tau}_{a}+(A_{h}\boldsymbol{\nabla}_{h}^{2}-R)\boldsymbol{k}\times\boldsymbol{\nabla}\psi$$

with transport $m{U}=\int_{-h}^{0}m{u}dz$ and streamfunction $m{U}=m{k} imesm{
abla}\psi$

▶ now take curl ($\pmb{k} imes \pmb{\nabla}$) · of momentum equation

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = \boldsymbol{k}\times\boldsymbol{\nabla}\cdot\boldsymbol{\tau}_{a} + (A_{h}\boldsymbol{\nabla}_{h}^{2} - R)(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})\psi$$

since $(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz = 0$

with

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi=-f(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\psi-\boldsymbol{\nabla}_{h}\psi\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})f=$$

$$-f\boldsymbol{\nabla}_{h}\psi=-\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz+\boldsymbol{\tau}_{a}+(A_{h}\boldsymbol{\nabla}_{h}^{2}-R)\boldsymbol{k}\times\boldsymbol{\nabla}\psi$$

with transport $m{U}=\int_{-h}^{0}m{u}dz$ and streamfunction $m{U}=m{k} imesm{
abla}\psi$

▶ now take curl ($\pmb{k} imes \pmb{\nabla}$) · of momentum equation

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = \boldsymbol{k}\times\boldsymbol{\nabla}\cdot\boldsymbol{\tau}_{a} + (A_{h}\boldsymbol{\nabla}_{h}^{2} - R)(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})\psi$$

since $(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz = 0$

with

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi=-f(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\psi-\boldsymbol{\nabla}_{h}\psi\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})f=\beta\frac{\partial\psi}{\partial x}$$

$$-f\boldsymbol{\nabla}_{h}\psi=-\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz+\boldsymbol{\tau}_{a}+(A_{h}\boldsymbol{\nabla}_{h}^{2}-R)\boldsymbol{k}\times\boldsymbol{\nabla}\psi$$

with transport $m{U}=\int_{-h}^{0}m{u}dz$ and streamfunction $m{U}=m{k} imesm{
abla}\psi$

▶ now take curl ($\pmb{k} imes \pmb{\nabla}$) · of momentum equation

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = \boldsymbol{k}\times\boldsymbol{\nabla}\cdot\boldsymbol{\tau}_{a} + (A_{h}\boldsymbol{\nabla}_{h}^{2} - R)(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})\psi$$

since $(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz = 0$

with

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = -f(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\psi - \boldsymbol{\nabla}_{h}\psi\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})f = \beta\frac{\partial\psi}{\partial x}$$

and with $(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})\psi = \boldsymbol{\nabla}_{h}^{2}\psi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$-f\boldsymbol{\nabla}_{h}\psi=-\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz+\boldsymbol{\tau}_{a}+(A_{h}\boldsymbol{\nabla}_{h}^{2}-R)\boldsymbol{k}\times\boldsymbol{\nabla}\psi$$

with transport $m{U}=\int_{-h}^{0}m{u}dz$ and streamfunction $m{U}=m{k} imesm{
abla}\psi$

▶ now take curl $(\mathbf{k} imes \mathbf{\nabla})$ of momentum equation

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = \boldsymbol{k}\times\boldsymbol{\nabla}\cdot\boldsymbol{\tau}_{a} + (A_{h}\boldsymbol{\nabla}_{h}^{2} - R)(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})\psi$$

since $(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\int_{-h}^{0}pdz = 0$

with

$$-(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot f\boldsymbol{\nabla}_{h}\psi = -f(\boldsymbol{k}\times\boldsymbol{\nabla})\cdot\boldsymbol{\nabla}_{h}\psi - \boldsymbol{\nabla}_{h}\psi\cdot(\boldsymbol{k}\times\boldsymbol{\nabla})f = \beta\frac{\partial\psi}{\partial x}$$

and with $(\pmb{k} imes \pmb{\nabla}) \cdot (\pmb{k} imes \pmb{\nabla}) \psi = \pmb{\nabla}_h^2 \psi$

the Stommel/Munk equation for flat bottom follows as

$$\beta \frac{\partial \psi}{\partial x} = \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a} + (A_{h} \boldsymbol{\nabla}_{h}^{2} - R) \boldsymbol{\nabla}_{h}^{2} \psi$$

first part identical to Sverdrup relation, friction related to A_h and R closes circulation at western boundary

numerical solution of Stommel's equation

$$\beta \frac{\partial \psi}{\partial x} = \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{\boldsymbol{a}} - R \boldsymbol{\nabla}_{\boldsymbol{h}}^2 \psi$$

with realistic wind stress τ_a (and $A_h = 0$)

HENRY MELSON STOMMEL, * 1920 in Wilmington (USA) †1992 in Boston (USA), oceanographer.

consider a wind stress of the form \(\tau_a = (-\tau_0 \cos \frac{\pi y}{\Box}, 0)\)
 with \(A_h = 0 \rightarrow Stommel's equation (left)\)
 and \(R = 0 \rightarrow Munk's equation (right)\)

$$\beta \frac{\partial \psi}{\partial x} = \mathbf{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{a} + (A_{h} \boldsymbol{\nabla}_{h}^{2} - R) \boldsymbol{\nabla}_{h}^{2} \psi$$

▶ balance bottom friction $R\nabla_h^2 \psi$ and planetary vorticity $\beta \partial \psi / \partial x$

$$egin{array}{rcl} eta & \mathcal{R}\psi/\mathcal{L}^2 & \mathcal{R}\psi/\mathcal{L}^2 \ \mathcal{L} & \sim & \mathcal{R}/eta \end{array}$$

Stommel's boundary layer with R/etapprox 50 - 100 km

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\beta \frac{\partial \psi}{\partial x} = \boldsymbol{k} \times \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_{\boldsymbol{a}} + (A_{\boldsymbol{h}} \boldsymbol{\nabla}_{\boldsymbol{h}}^2 - R) \boldsymbol{\nabla}_{\boldsymbol{h}}^2 \psi$$

▶ balance bottom friction $R\nabla_h^2 \psi$ and planetary vorticity $\beta \partial \psi / \partial x$

$$egin{array}{rcl} eta & \mathcal{R}\psi/L & \sim & \mathcal{R}\psi/L^2 \ L & \sim & \mathcal{R}/eta \end{array}$$

Stommel's boundary layer with R/etapprox 50 - 100 km

▶ balance lateral friction $A_h \nabla_h^4 \psi$ and planetary vorticity $\beta \partial \psi / \partial x$

$$egin{array}{rcl} eta & \sim & A_h \psi/L^4 \ L & \sim & (A_h/eta)^{1/3} \end{array}$$

Munk's boundary layer with $(A_h/\beta)^{1/3}$

• $(A_h/\beta)^{1/3}$ is often used to choose value for A_h in numerical models

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

► since V < 0 in the interior of the subtropical gyre V > 0 in the western boundary $\rightarrow \beta V > 0 \rightarrow R \partial V / \partial x < 0$

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

- ► since V < 0 in the interior of the subtropical gyre V > 0 in the western boundary $\rightarrow \beta V > 0 \rightarrow R \partial V / \partial x < 0$
- ▶ for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x < 0$

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

- ► since V < 0 in the interior of the subtropical gyre V > 0 in the western boundary $\rightarrow \beta V > 0 \rightarrow R \partial V / \partial x < 0$
- ▶ for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x < 0$
- ▶ for eastern boundary layer V increases to the east
 - \rightarrow no eastern boundary layer

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

- ► since V < 0 in the interior of the subtropical gyre V > 0 in the western boundary $\rightarrow \beta V > 0 \rightarrow R \partial V / \partial x < 0$
- ▶ for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x < 0$
- ▶ for eastern boundary layer V increases to the east → no eastern boundary layer
- westward Rossby waves propagate to the west

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

- ► since V < 0 in the interior of the subtropical gyre V > 0 in the western boundary $\rightarrow \beta V > 0 \rightarrow R \partial V / \partial x < 0$
- ▶ for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x < 0$
- ▶ for eastern boundary layer V increases to the east → no eastern boundary layer
- westward Rossby waves propagate to the west
- they are reflected at the western boundary as short Rossby waves with eastward group velocity

- why is the western boundary current in the west?
- dominant balance in the western boundary current regime

$$\beta \frac{\partial \psi}{\partial x} = \beta V \approx \underline{k} \times \nabla \cdot \overline{\tau_a} - R \nabla_h^2 \psi \approx -R \frac{\partial^2 \psi}{\partial x^2} = -R \frac{\partial V}{\partial x}$$

- ► since V < 0 in the interior of the subtropical gyre V > 0 in the western boundary $\rightarrow \beta V > 0 \rightarrow R \partial V / \partial x < 0$
- ▶ for western boundary layer V decreases to the east $\rightarrow \partial V / \partial x < 0$
- ▶ for eastern boundary layer V increases to the east → no eastern boundary layer
- westward Rossby waves propagate to the west
- they are reflected at the western boundary as short Rossby waves with eastward group velocity
- short Rossby waves are dissipated in the west and form the boundary current

 Schematic of the near-surface circulation (after Schmitz 1996).
 Subtropical gyres are red, subpolar and polar gyres blue equatorial gyres magenta, Antarctic Circumpolar Current is blue green lines represent exchange between basins and gyres