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oral examination Tuesday July 7., 2015

I 13:00 Tabea Kilchling

I 13:30 Isabell Hochfeld

I 14:00 Lucas Schmidt

I 14:30 Annika Buck

I 15:00 Elena Hirschhoff

I 15:30 Heninng Dorff

I 16:00 Jerome Sauer

I 16:30 Carolin Meier ?

I 17:00 Sophie Specht ?

I 17:30 Anna Wünsche ?
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I Schematic of the near-surface circulation (after Schmitz 1996).

Subtropical gyres are red, subpolar and polar gyres blue

equatorial gyres magenta, Antarctic Circumpolar Current is blue

green lines represent exchange between basins and gyres
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I momentum equation in vector form for Ro � 1

f k × u = − 1

ρ0
∇hp +

1

ρ0

∂τ

∂z
with k × u = (−v , u, �0)

I τ = (τ x , τ y ) is a stress vector with τ (z = 0) = τ a where τ a is the
surface wind stress in N/m2 acting on the ocean

I split the flow into geostrophic and frictional (Ekman) components,

u = uG + uE (and w = wG + wE ), governed by

f k × uG = − 1

ρ0
∇hp and f k × uE =

1

ρ0

∂τ

∂z

and the same for continuity equation

∇ · uG +
∂wG

∂z
= 0 and ∇ · uE +

∂wE

∂z
= 0

I sum uG + uE satisfies full momentum and continuity equation



Recapitulation Elementarstromsystem 6/ 36

I momentum equation in vector form for Ro � 1

f k × u = − 1

ρ0
∇hp +

1

ρ0

∂τ

∂z
with k × u = (−v , u, �0)

I τ = (τ x , τ y ) is a stress vector with τ (z = 0) = τ a where τ a is the
surface wind stress in N/m2 acting on the ocean

I split the flow into geostrophic and frictional (Ekman) components,

u = uG + uE (and w = wG + wE ), governed by

f k × uG = − 1

ρ0
∇hp and f k × uE =

1

ρ0

∂τ

∂z

and the same for continuity equation

∇ · uG +
∂wG

∂z
= 0 and ∇ · uE +

∂wE

∂z
= 0

I sum uG + uE satisfies full momentum and continuity equation



Recapitulation Elementarstromsystem 7/ 36

I Elementarstromsystem (for ρ = const)

I u = uG + uE (and w = wG + wE )

surface and bottom Ekman layers superimposed on geostrophic flow
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I vertically integrated velocity

U =

∫ 0

−h

u dz =

∫ 0

−h

(uG + uE ) dz = UG + UE

I with the (total) transport vector U , dimension m2s−1

I transport by the geostrophic velocity → geostrophic transport UG

transport by the Ekman velocity → Ekman transport UE

f k × uE =
1

ρ0

∂τ

∂z

f k ×
∫ 0

−h

uE dz =
1

ρ0
(τ (z = 0)− τ (z = −h))

f k ×UE =
1

ρ0
(τ a − τ b)

UE = − 1

f ρ0
k × (τ a − τ b)

with surface wind stress τ a and bottom stress τ b

I split UE into surface and bottom Ekman transport
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I vertically integrated velocity U = UG + UE with geostrophic
transport UG and Ekman transport UE given by

UE = − 1

f ρ0
k × (τ a − τ b)

≡ U top
E + Ubot

E

with surface wind stress τ a and bottom stress τ b

I split into surface Ekman transport in surface Ekman layer

U top
E = − 1

f ρ0
k × τ a

orthogonal to wind stress direction (to the right for f > 0)

does not depend on parameterisation of τ in the interior

I and bottom Ekman transport in bottom Ekman layer

Ubot
E =

1

f ρ0
k × τ b

depends on parameterisation of τ in the interior
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I Elementarstromsystem

I u = uG + uE (and w = wG + wE )

surface and bottom Ekman layers superimposed on geostrophic flow
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I zonal (left) and meridional component (right) of τ a in 10−2 N/m2

I surface Ekman transport in surface Ekman layer

U top
E = − 1

f ρ0
k × τ a

orthogonal to wind stress direction (to the right for f > 0)

I equatorward in west wind region poleward in trade wind region

I convergence between west wind and trade wind region

I divergence at high latitude and at equator
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I integrating the continuity equation for uE and wE from z to z = 0

∇ · uE +
∂wE

∂z
= 0

yields the vertical Ekman velocity∫ 0

z

∇ · uE dz +���
��wE (z = 0)− wE (z) = 0 → wE (z) = ∇ ·

∫ 0

z

uE dz

I since uE ≈ 0 below Ekman depth D ≈ 50m

wE |z<−D ≈∇ ·
∫ 0

z<−D

uE dz = ∇ ·U top
E = −∇ · 1

f ρ0
k × τ a = k ×∇ · τ

a

ρ0f

with Ekman pumping wE |z<−D
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I Ekman pumping wE in m per year

wE |z<−D ≈∇ ·U top
E = k ×∇ · τ

a

ρ0f

with Ekman depth D ≈ 50m (depends on Av )

I Ekman transport U top
E and pumping wE do not depend on Av
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I coastal upwelling

from Talley et al 2011
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I equatorial upwelling

from Talley et al 2011
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I momentum equation in planetary geostrophic approximation

f k × u = − 1

ρ0
∇hp +

1

ρ0

∂τ

∂z
with k × u = (−v , u, 0)

I neglect sea surface height z = ζ → assume rigid lid at z = 0

I assume flat bottom at z = −h = const

I vertically integrate from bottom to surface

ρ0f k ×U = −∇h

∫ 0

−h

pdz + τ a − τ b

with transport U =
∫ 0

−h
udz , surface and bottom stress τ a and τ b

I take curl and it follows the famous Sverdrup relation

ρ0βV = k ×∇ · (τ a − τ b)

where τ b is often neglected

I depth integrated transport V calculated from wind stress curl only
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I since ∇h ·U = 0 introduce volume transport streamfunction, with

U = −∂ψ
∂y

, V =
∂ψ

∂x
→ U = k ×∇ψ

transport U is parallel to contour lines of ψ

I ψ determines transport perpendicular to or ”across” section A→ B

I Sverdrup relation becomes

ρ0β V = ρ0β
∂ψ

∂x
= k ×∇ · τ a

for τ b = 0

I integration from eastern boundary (x = xE ) where ψ(xE ) = 0

ψ(x , y) = − 1

ρ0β

∫ xe

x

k ×∇ · τ a dx

I ψ(xE ) = 0 along east eastern boundary but not at western boundary

→ western boundary current not included
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I ψ = −1/(ρ0β)
∫ xe
x

k ×∇ · τ a dx from realistic wind stress

in 106 m3/s ≡ 1 Sv
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I ψ in a global state estimate in 106 m3/s ≡ 1 Sv
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I Streamfunction ψ in Sv = 106 m3/s from simple Sverdrup relation

I Streamfunction ψ for a realistic model of the Atlantic Ocean

a) b)

I simple Sverdrup relation works surprisingly well
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I vertically integrated momentum equation

−ρ0fV = − ∂

∂x

∫ 0

−h

pdz + τ xa ≡ −
∂P

∂x
+ τ xa

ρ0fU = − ∂

∂y

∫ 0

−h

pdz + τ ya ≡ −
∂P

∂y
+ τ ya

I split in Ekman transport UE und geostrophic transport UG

−ρ0fV ≡ −ρ0f (VG + VE ) = −∂P
∂x

+ τ xa

ρ0fU ≡ ρ0f (UG + UE ) = −∂P
∂y

+ τ ya

I with Ekman transport

−ρ0fVE = τ xa , ρ0fUE = τ ya → ρ0f k ×UE = τ a → ρ0f UE = −k × τ a

I and with geostrophic transport

−ρ0fVG = −∂P
∂x

, ρ0fUG = −∂P
∂y
→ ρ0f UG = k ×∇hP

I Ekman transport + geostr. transport = Sverdrup transport
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I Ekman pumping generates southward geostr. transport (for f > 0)

from Talley et al 2011
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I Sverdrup relation follows from potential vorticity conservation

I potential vorticity equation for a single layer

Dq

Dt
= 0 , q =

ζ + f

h
or q ≈ ζ − f0

H
h + f

q is conserved for fluid parcels in single layer

I wE lead to vortex stretching and meridional motion
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I momentum equation in planetary geostrophic approximation

f k × u = −∇hp +
∂τ

∂z
+ Ah∇2

hu − R u

with stress vector τ connecting to surface wind stress

with lateral friction related to the lateral turbulent viscosity Ah

and with turbulent Rayleigh (bottom) friction related to R

I vertically integrating from flat bottom to surface (assume τ b = 0)

f k ×
∫ 0

−h

udz = −
∫ 0

−h

∇hpdz + τ a +

∫ 0

−h

(Ah∇2
h − R)udz

I for h = const vertical integration and ∇ commute

f k ×U = −∇h

∫ 0

−h

pdz + τ a + (Ah∇2
h − R)U

with transport U =
∫ 0

−h
udz

I use transport streamfunction ψ with U = k ×∇ψ

−f∇hψ = −∇h

∫ 0

−h

pdz + τ a + (Ah∇2
h − R)k ×∇ψ
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I vertically integrated momentum equation

−f∇hψ = −∇h

∫ 0

−h

pdz + τ a + (Ah∇2
h − R)k ×∇ψ

with transport U =
∫ 0

−h
udz and streamfunction U = k ×∇ψ

I now take curl (k ×∇)· of momentum equation

−(k ×∇) · f∇hψ = k ×∇ · τ a + (Ah∇2
h − R)(k ×∇) · (k ×∇)ψ

since (k ×∇) ·∇h

∫ 0

−h
pdz = 0

I with

−(k ×∇) · f∇hψ = −f (k ×∇) ·∇hψ −∇hψ · (k ×∇)f =

β
∂ψ

∂x

and with (k ×∇) · (k ×∇)ψ = ∇2
hψ

I the Stommel/Munk equation for flat bottom follows as

β
∂ψ

∂x
= k ×∇ · τ a + (Ah∇2

h − R)∇2
hψ

first part identical to Sverdrup relation, friction related to Ah and R
closes circulation at western boundary
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I numerical solution of Stommel’s equation

β
∂ψ

∂x
= k ×∇ · τ a − R∇2

hψ

with realistic wind stress τ a (and Ah = 0)

I Henry Melson Stommel, * 1920 in Wilmington (USA) †1992 in
Boston (USA), oceanographer.
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I consider a wind stress of the form τ a = (−τ0 cos πyB , 0)

with Ah = 0 → Stommel’s equation (left)

and R = 0 → Munk’s equation (right)

from Vallis 2006
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I boundary layer scaling

β
∂ψ

∂x
= k ×∇ · τ a + (Ah∇2

h − R)∇2
hψ

I balance bottom friction R∇2
hψ and planetary vorticity β∂ψ/∂x

βψ/L ∼ Rψ/L2

L ∼ R/β

Stommel’s boundary layer with R/β ≈ 50− 100 km

I balance lateral friction Ah∇4
hψ and planetary vorticity β∂ψ/∂x

βψ/L ∼ Ahψ/L
4

L ∼ (Ah/β)1/3

Munk’s boundary layer with (Ah/β)1/3

I (Ah/β)1/3 is often used to choose value for Ah in numerical models
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I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current



Wind driven circulation Western boundary currents 35/ 36

I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current



Wind driven circulation Western boundary currents 35/ 36

I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current



Wind driven circulation Western boundary currents 35/ 36

I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current



Wind driven circulation Western boundary currents 35/ 36

I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current



Wind driven circulation Western boundary currents 35/ 36

I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current
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I why is the western boundary current in the west?

I dominant balance in the western boundary current regime

β
∂ψ

∂x
= βV ≈(((((k ×∇ · τ a − R∇2

hψ ≈ −R
∂2ψ

∂x2
= −R ∂V

∂x

between bottom friction and change in planetary vorticity

I since V < 0 in the interior of the subtropical gyre

V > 0 in the western boundary → βV > 0→ R∂V /∂x < 0

I for western boundary layer V decreases to the east → ∂V /∂x < 0

I for eastern boundary layer V increases to the east

→ no eastern boundary layer

I westward Rossby waves propagate to the west

I they are reflected at the western boundary as short Rossby waves

with eastward group velocity

I short Rossby waves are dissipated in the west and form the
boundary current
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I Schematic of the near-surface circulation (after Schmitz 1996).

Subtropical gyres are red, subpolar and polar gyres blue

equatorial gyres magenta, Antarctic Circumpolar Current is blue

green lines represent exchange between basins and gyres
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