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> Schematic of the near-surface circulation (after Schmitz 1996).
Subtropical gyres are red, subpolar and polar gyres blue
equatorial gyres magenta, Antarctic Circumpolar Current is blue

green lines represent exchange between basins and gyres
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> planetary geostrophic approximation: 6 — 1, Ro — 0 but finite Ek

> momentum equation becomes
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> planetary geostrophic approximation: 6 — 1, Ro — 0 but finite Ek

> momentum equation becomes

—f = _l@ + friction , fu= _i@ + friction

po Ox po Oy
» friction in planetary approximation has not much to do with
molecular friction — assumed scales L and H are too large

> but (non-linear) effects of smaller-scale motions are still present

Breaking waves

Langmuir
circulation

Breaking &\
internal

waves Thorpe (1985)



Recapitulation Ekman layer

» Reynolds-averaged momentum equations become for Ro < 1
190p 107" p 190p 107

u= + ——
poOx  po 0z ' pody  po 0z
with 7% = —pow/u’ and ™ = —pow’v’
» 7% and 7 describe the non-linear effect of small-scale turbulence,
i.e. by «/, v/ and w’ on the mean flow v and v
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>

Ekman layer

Reynolds-averaged momentum equations become for Ro < 1
190p 107" p 190p 107

9 u= + a_
po Ox ~ po 0z pody  po 0z

7% and 7Y describe the non-linear effect of small-scale turbulence,
i.e. by «/, v/ and w’ on the mean flow v and v

T = (7%,7) is a stress vector with 7(z = 0) = 72 where 72 is the
surface wind stress in N/m? acting on the ocean

stress in the interior is due to small scale turbulence and we expect
the stress to decay rapidly over depth — Ekman layer depth

use down-gradient parameterization for stress vector
1 du 1 v

Dox_p 0 2y p %V
poT oz ,ooT "0z

with turbulent vertical viscosity A,

A, depends on turbulence, can be negative or non-existent

typical values are A, ~ 0.1 m?s~! near the surface mixed layer

2

and much smaller A, ~ 10™* m?s~! in the interior
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> 'bulk formulae’ for wind stress
a
T = pairCD|uair - usl(uair - us)

with air density p,; and velocity u,;, and surface ocean velocity u,
and 'drag coefficient’ Cp ~ 1.2 x 1073

> for |us| < |ugi|

T2 = pair Cp| Uair |Uair

» zonal (a,c) and meridional component (b,d) of 72 in 1072 N/m?
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Recapitulation Ekman spirals

> assume A, = const (which is a special case) and V,p =0

> momentum equation becomes

1 0%u 190 0%v
VL Ny WS T Ny i
Y 6 Ox * 0z2 “ /oo/%—i_ 0z2
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1 0%u 190 0%v
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assume A, = const (which is a special case) and V,p =10

momentum equation becomes

1 0%u 190 0%v
=P AT = 2P p Y
Y }0/%+ 0z2 “ /00/%4_ 022

general solution for f > 0
u+iv=as exp[(i+1)z/D] + a_ exp[—(i + 1)z/D]
where D = /2A, /|f| is the Ekman layer depth

D is typically about 50 m but depends on unknown A,

split solution in surface (a+) and bottom part (a_)
— surface Ekman spiral/layer and bottom Ekman spiral/layer

surface Ekman spiral (for f > 0 and A, = const)
maximum at z = 0, decaying and spiraling with depth

u=D/(2A,)e”'P ((T, — k x T,) cos(z/D) + (7, + k x ;) sin(z/D))

with k x 7 = (=7 7(J @) (anticlockwise rotation of T by 90°)



Recapitulation Ekman spirals 10/ 39

1=345° rent
q\%‘b ;—\‘ Surface €U0 Spiraling
/>
g currents
Wind o
/\ Surface
Net water Sre
transport
&
Net water
é & transport
= 7 90°
¥
e (b) MAPVIEW
7
i No water motion

» solution for the surface Ekman spiral for f > 0 and A, = const
u=D/(2A,)e”'P (1. — k x T,)cos(z/D) + (T, + k x T,)sin(z/D))
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10/ 39
1 =45° ent
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» solution for the surface Ekman spiral for f > 0 and A, = const
u=D/(2A,)e”'P (1. — k x T,)cos(z/D) + (T, + k x T,)sin(z/D))

> with u|,—o rotated clockwise (f > 0) by 45° from wind stress 7,
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Spiraling
// currents
Wind e
/\ Surface
Net water Sre
transport
&
Net water
é & transport
= 90°
7
74
i (b) MAPVIEW
7/
o No water motion

» solution for the surface Ekman spiral for f > 0 and A, = const
u=D/(2A,)e”'P (1. — k x T,)cos(z/D) + (T, + k x T,)sin(z/D))
> with u|,—o rotated clockwise (f > 0) by 45° from wind stress 7,

» and u|z=_D7r/2 rotated anticlockwise by 45° from wind stress T,
but much smaller
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» Ekman-like currents from ADCP in California Current

(D)
8

North Velocity (cm/s)

[N

o

-4

-6

Ekman spirals

Average currents and wind (6 Jun - 4 Oct 1993)
EKMAN THEORY
De=25m
L OBSERVATIONS A=2742cm7s 15
(slab extrapolation) 12
3 8
4
I 0
De =48m
3 A=1011 cm%s
-8 -6 -4 -2 0 2 4 6

East Velocity (cm/s)

from Chereskin (1995)
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» now include also pressure gradient Vp

» momentum equation in vector form for Ro < 1

fk xu= fivthria—T with k x u = (—v, u,)
Po po 0z

> 7 = (7%,7Y) is a stress vector with 7(z = 0) = 72 where 7 is the
surface wind stress in N/m? acting on the ocean
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» now include also pressure gradient Vp

» momentum equation in vector form for Ro < 1

fk xu= fivthria—T with k x u = (—v, u,)
Po po 0z

> 7 = (7%,7Y) is a stress vector with 7(z = 0) = 72 where 7 is the
surface wind stress in N/m? acting on the ocean

> split the flow into geostrophic and frictional (Ekman) components,

u=u¢+ ug (and w = wg + wg), governed by

1 1
fk xug=——Vup and kauE:—a—T
Po po 0z
and the same for continuity equation
0 0
Voug+ 2% -0 and Vouet+ZE—0
0z 0z

> sum ug + ug satisfies full momentum and continuity equation



Wind driven circulation Elementarstromsystem

> Elementarstromsystem (for p = const)

14/ 39
> u=u¢+ ug (and w = wg + wg)

surface and bottom Ekman layers superimposed on geostrophic flow
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» vertically integrated velocity

0 0
U:/ udz:/(uc+uE)dz:UG+UE
—h —h
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» vertically integrated velocity

0 0
U:/ udz:/(uc+uE)dz:UG+UE
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2,1

> with the (total) transport vector U, dimension m*s™
> transport by the geostrophic velocity — geostrophic transport Ug

transport by the Ekman velocity — Ekman transport Ug
107

fk = ==
X Ug Py a2z
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» vertically integrated velocity

0 0
U:/ udz:/(uc+uE)dz:UG+UE
—h —h

2,1

> with the (total) transport vector U, dimension m*s™
> transport by the geostrophic velocity — geostrophic transport Ug

transport by the Ekman velocity — Ekman transport Ug

107
fk x ue Py a2z
0 1
ka/ ugdz = —(1(z=0)—7(z=—h))
—h £o
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» vertically integrated velocity

0 0
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» vertically integrated velocity

0 0
U:/ udz:/(uc+uE)dz:UG+UE
—h —h

2,1

> with the (total) transport vector U, dimension m*s™
> transport by the geostrophic velocity — geostrophic transport Ug

transport by the Ekman velocity — Ekman transport Ug

107
fk x ur P 97
0 1
ka/ ugdz = —(1(z=0)—7(z=—h))
—h £o
kaUE = i('7'3—’7'1:,)
Po

with surface wind stress 72 and bottom stress 7
> with k x (k x U) =k x (-V,U,0)=(-U,-V,0)=-U

1 a

> split Ug into surface and bottom Ekman transport



Wind driven circulation Ekman transport

> vertically integrated velocity U = U + Ug with geostrophic
transport U and Ekman transport Ug given by

1
= —7,( a_
Ue oo X (17 —Tp)

with surface wind stress 72 and bottom stress 7
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> vertically integrated velocity U = U + Ug with geostrophic
transport U and Ekman transport Ug given by

1 b
Ug = —f—k x (17 — 1) = UZP + UF*
Po
with surface wind stress 72 and bottom stress 7

» split into surface Ekman transport in surface Ekman layer

top 1
U =——kx7?

£ fpo

orthogonal to wind stress direction (to the right for f > 0)

does not depend on parameterisation of 7 in the interior
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> vertically integrated velocity U = U + Ug with geostrophic
transport U and Ekman transport Ug given by

1
Us = ———kx(17—1p) = U+ UL
f po
with surface wind stress 72 and bottom stress 7
» split into surface Ekman transport in surface Ekman layer
top 1 a
Ul =——kxT
fpo
orthogonal to wind stress direction (to the right for f > 0)
does not depend on parameterisation of 7 in the interior
> and bottom Ekman transport in bottom Ekman layer
1

Ubot —
g fpo

kXTb

depends on parameterisation of 7 in the interior
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18/ 39
> u=u¢+ ug (and w = wg + wg)

surface and bottom Ekman layers superimposed on geostrophic flow

N
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» zonal (left) and meridional component (right) of 72 in 1072 N/m?

100°E 160°W 60°W 40°E 100°E 160°W 60°W 40°E

> surface Ekman transport in surface Ekman layer

1
UgP=———kx
Po

orthogonal to wind stress direction (to the right for f > 0)
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» zonal (left) and meridional component (right) of 72 in 1072 N/m?

100°E 160°W 60°W 40°E 100°E 160°W 60°W 40°E

> surface Ekman transport in surface Ekman layer
top 1
U =——kxt?
£ f po
orthogonal to wind stress direction (to the right for f > 0)
» equatorward in west wind region poleward in trade wind region
> convergence between west wind and trade wind region

» divergence at high latitude and at equator
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» momentum equation in vector form for Ro < 1

1 10
kau:——Vhp—i———T with k x u = (—v,u,0)
Po po 0z

> 7 = (7%,7Y) is a stress vector with 7(z = 0) = 72 where 77 is the
surface wind stress in N/m? acting on the ocean
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» momentum equation in vector form for Ro < 1
1 1o .
fkxu=——Vyp+—— with kxu=(-v,uf)
Po po 0z
> 7 = (7%,7Y) is a stress vector with 7(z = 0) = 72 where 77 is the
surface wind stress in N/m? acting on the ocean

> split the flow into geostrophic and frictional (Ekman) components,

u=ug+ ug (and w = wg + wg), governed by

1 1
fk xug=——Vup and kauE:—a—T
Po po 0z
and the same for continuity equation
9] 0
Voue+ 2% —0 and V.ourt+ o
0z 0z

> sum ug + ug satisfies full momentum and continuity equation
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> integrating the continuity equation for ug and wg from z to z =0
ow
Voug+—===0
0z
yields the vertical Ekman velocity

0 0
/ V- ug dz + welz=70) — we(z) =0 — WE(z):V-/ ug dz
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> integrating the continuity equation for ug and wg from z to z =0
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yields the vertical Ekman velocity

0 0
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» Ekman velocity is given by
ue = D/(2A,)e”P (72 — k x T,) cos(z/D) + (T, + k x ;) sin(z/D))
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> integrating the continuity equation for ug and wg from z to z =0
ow
Voug+—===0
0z
yields the vertical Ekman velocity

0 0

/ V- ug dz + welz=70) — we(z) =0 — WE(z):V-/ ug dz
» Ekman velocity is given by

ug = D/(2A,)e”/P ((1, — k x T5) cos(z/D) + (7, + k x T,)sin(z/D))
> since ug ~ 0 below Ekman depth D ~ 50m

0
1
WE|z<—D%V~/ up dz=V U =-V.—kxr?
z<—D fpo

with Ekman pumping wel|,<—p



Wind driven circulation Ekman pumping 22/ 39

> integrating the continuity equation for ug and wg from z to z =0

)
Voup+ 2E =0
0z

yields the vertical Ekman velocity
0 0
/ V- ug dz + welz=70) — we(z) =0 — WE(z):V-/ ug dz
» Ekman velocity is given by

ug = D/(2A,)e”/P ((1, — k x T5) cos(z/D) + (7, + k x T,)sin(z/D))

> since ug ~ 0 below Ekman depth D ~ 50m

Ta

0
1
WE|z<—D%V~/ uEdz:V-U?p:—V~—k><Ta:k><V-
2<—D fpo pof

with Ekman pumping wg|,<_p and

_2 )
v - (F) ()
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> integrating the continuity equation for ug and wg from z to z =0

o
Vour+2E 9
0z

yields the vertical Ekman velocity
0 0
/ V- ug dz + welz=70) — we(z) =0 — WE(z):V-/ ug dz
» Ekman velocity is given by

ug = D/(2A,)e”/P ((1, — k x T5) cos(z/D) + (7, + k x T,)sin(z/D))

> since ug ~ 0 below Ekman depth D ~ 50m

Ta

0
1
WE|z<—D%V~/ uEdz:V-U?p:—V~—k><Ta:k><V-
2<—D fpo pof

with Ekman pumping wg|,<_p and

_9 (x) b b
T X
KXV .7 — ( f?y>'<7(y>>__ay7()+m7(y)

Ix
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> integrating the continuity equation for ug and wg from z to z =0

o
Vour+2E 9
0z

yields the vertical Ekman velocity
0 0
/ V- ug dz + welz=70) — we(z) =0 — WE(z):V-/ ug dz
» Ekman velocity is given by

ug = D/(2A,)e”/P ((1, — k x T5) cos(z/D) + (7, + k x T,)sin(z/D))

> since ug ~ 0 below Ekman depth D ~ 50m

Ta

0
1
WE|z<—D%V~/ uEdz:V-U?p:—V~—k><Ta:k><V-
2<—D fpo pof

with Ekman pumping wg|,<_p and
_9 (x) b 9
) - ) AT — _ Y 0L 2
k X V T ( ay > < T(y) ) ayT + 6XT

ox
KA ()
- ax ). 7
(%) (%)



Wind driven circulation Ekman pumping 22/ 39

> integrating the continuity equation for ug and wg from z to z =0

)
Voup+ 2E =0
0z

yields the vertical Ekman velocity
0 0
/ V- ug dz + welz=70) — we(z) =0 — WE(z):V-/ ug dz
» Ekman velocity is given by

ug = D/(2A,)e”/P ((1, — k x T5) cos(z/D) + (7, + k x T,)sin(z/D))

> since ug ~ 0 below Ekman depth D ~ 50m

Ta

0
1
WE|z<—D%V~/ uEdz:V-U?p:—V~—k><Ta:k><V-
2<—D fpo pof

with Ekman pumping wg|,<_p and

_0 (x) b b
. - ) AT — ) 4 Z
k X V T = ( %}/ > < T(y) ) = ayT + 6XTy

() ()=



Wind driven circulation Ekman pumping 23/ 39

» Ekman pumping wg in m per year

Ta
Wel;«cp = V- U =kx V. —
Po
with Ekman depth D ~ 50 m (depends on A,)
BON —3

40°N

o°

[}
W N
o O

40°S

I
[
o

|
(=]
[=]

-:IIIIIIIIIIIIIIIIIIIID

80°S
100°E 160°W 60°W 40°E

» Ekman transport UtEOP and pumping wg do not depend on A,
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» coastal upwelling

Northern
Hemisphere

<
&

from Talley et al 2011
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> equatorial upwelling

(a) Ekman transport (northward)
Northern
Hemisphere
Trade Winds Equator

¢ * Southern
Hemisphere

Ekman transport (southward)

(b)

Trade
Winds
Sea surface
warm warm
Ekman (— <« cqd Ekman
transport transport

Thermocline

Southern

Northern
Hemisphere Equator

Hemisphere

from Talley et al 2011

26/ 39



Wind driven circulation Ekman pumping 27/ 39

Oberflaechennahe Phytoplanktonkonzentration im Sommer

BO*H
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» momentum equation for Ro k1

1
fk xu= ——Vhp+ —g—z with k x u = (—-v,u,0)
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Wind driven circulation Sverdrup transport

» momentum equation for Ro k1

1
fk xu= ——Vhp+ —g—z with k x u = (—-v,u,0)

> neglect sea surface height z = ( — assume rigid lid at z=0

» assume flat bottom at z = —h = const

» vertically integrate momentum equation from bottom to surface
0
pofk x U:—Vh/ pdz + T, —Tp
—h

with transport U = ffh udz, surface and bottom stress 7, and 7
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» momentum equation for Ro < 1

1
kau———Vhp+—g—Z with k x u = (—-v,u,0)

> neglect sea surface height z = ( — assume rigid lid at z=0
> assume flat bottom at z = —h = const

» vertically integrate momentum equation from bottom to surface
0
pofk x U:—Vh/ pdz + T, —Tp
—h

with transport U = ffh udz, surface and bottom stress 7, and 7
> take curl which yields (after a little calculation)
poBV +pofVy-U = kxV . (1,—Tp)
with 8 = df /dy
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» momentum equation for Ro k1

10
fk xu= ——Vhp+ —8—7 with k x u = (—-v,u,0)
z
> neglect sea surface height z = ( — assume rigid lid at z=0
> assume flat bottom at z = —h = const

» vertically integrate momentum equation from bottom to surface
0
pofk x U:—Vh/ pdz + T, —Tp
—h

with transport U = ffh udz, surface and bottom stress 7, and 7
> take curl which yields (after a little calculation)
poBV +pofVy-U = kxV . (1,—Tp)
with 8 = df /dy
> since V- U = 0 from continuity equation V- u+ 0w/0z =10
it follows the famous Sverdrup relation
poBV = kxV-(T,—Tp)
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» little calculation: curl of vertically integrated momentum equation

0

pofk x U:—Vh/ pdz + T, —Tp
h
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» little calculation: curl of vertically integrated momentum equation

0
pdz+T,—Tp
h

pofk x u:—v,,/

> rewrite component wise

0 0

0
—pofV =~ | pdz+mX =15, pofU=—~— [ pdz+1—7!
po x| PeEtTI =T 5y | PeETT =T
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» little calculation: curl of vertically integrated momentum equation

0

pofk x U:—Vh/ pdz + T, —Tp
h

> rewrite component wise

0

0

0
—potV =—— [ pdz+75—715 , pofU=—— [ pdz+7)—1}
X J—h

Ay J_p

> 0/0y of 1. equation minus 9/0x of 2. equation

~ 5y (PofV) ~oxdy

92 [0 o, .
/thZJF@(Ta —73)
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» little calculation: curl of vertically integrated momentum equation

0

pofk x U:—Vh/ pdz + T, —Tp
h

> rewrite component wise

0 0

0 0
—pof\/:—a hpdz—l—T;(—Tg , pofUz—@ hpdz—l—Tay—Tg

> 0/0y of 1. equation minus 9/0x of 2. equation

d o> [ o, .
*@(Poﬂ/) = 78x8y/,hpdz+@(7377b)

ou ”? [0 0
o - 9 Yy _ .y
pof@x Oxdy /,hpdz+8x(7—a ™)
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» little calculation: curl of vertically integrated momentum equation

0

pofk x U:—Vh/ pdz + T, —Tp
h

> rewrite component wise

0 0

0 0
—pof\/:—a hpdz—l—T;(—Tg , pofUz—@ hpdz—l—Tay—Tg

> 0/0y of 1. equation minus 9/0x of 2. equation

d o> [ o, .
M) = gy [ gy
ou 92 [0 0
- = __— (Y Y
pofax 9xdy [hpdz+ 8X(Ta )
df oV U B B
_ - o o 7 (X X y _ Y
podyV pofa Pofax 9 (73 b) 9 (73 b)
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» little calculation: curl of vertically integrated momentum equation

0

pofk x U:—Vh/ pdz + T, —Tp
h

> rewrite component wise

0 0

0
—pofV = —— d XX pofU=—— d. Yy
Po ” hpz+Ta Th Po By _hpz+Ta Th

> 0/0y of 1. equation minus 9/0x of 2. equation

d o> [ o, .
*@(Poﬂ/) =~ Toxdy /7hpdz+@(73 —75)
ou *? [° %)
o - 9 Gy _ oy
pof@x Oxdy /,hpdz+8x(7—a ™)
df oV ou 0 0
_ Ay Y9 Y x oy Yy Ly
pogV Pofay pof == oy (T ~76) = 5 (3 =)
—poBV —pofVy-U = —kxV-(1,—Tp)
with 8 = df /dy and k x V = (—9/0y,d/0x,0)
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» since V- U = 0 introduce volume transport streamfunction, with

oY _% _
Fy V_8x - U=kxVy

transport U is parallel to contour lines of 1
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» since V- U = 0 introduce volume transport streamfunction, with

—a—w, V:a—w - U=kxVy
dy Ox

transport U is parallel to contour lines of 1

» 1) determines transport perpendicular to or "across” section A — B

B B B
/ U-ds:/ kwi-ds:/ Vi - d€ = (B) — 1p(A)
A A A

where ds is a line element perpendicular to section A — B
and dZ is line element along section A — B
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» since V- U = 0 introduce volume transport streamfunction, with

—a—w, V:a—w - U=kxVy
dy Ox

transport U is parallel to contour lines of 1

» 1) determines transport perpendicular to or "across” section A — B

B B B
/ U-ds:/ kwi-ds:/ Vi - d€ = (B) — 1p(A)
A A A

where ds is a line element perpendicular to section A — B
and dZ is line element along section A — B

> Sverdrup relation becomes (for 7, = 0)

0
PoﬁV:Poﬁafw:kXV'Ta
X
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» since V- U = 0 introduce volume transport streamfunction, with

u=-2% v_%  y_kxwy
dy Ox

transport U is parallel to contour lines of 1

» 1) determines transport perpendicular to or "across” section A — B

B B B
/ U-ds:/ kwi-ds:/ Vi - d€ = (B) — 1p(A)
A A A

where ds is a line element perpendicular to section A — B
and dZ is line element along section A — B

> Sverdrup relation becomes (for 7, = 0)
0
PoﬁV:Poﬁafw:kXV'Ta
X
> integration from x to eastern boundary (x = xg) where (xg) =0

P(x,y) / kxV -7, dx

 poB

— Sverdrup streamfunction
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» Sverdrup streamfunction

pOﬂ X

50°E 150°E 110°W 10°w

> 1(xg) = 0 along east eastern boundary but not at western boundary
— western boundary current not included

> but in the interior ¢ is rather realistic
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> 1) in a global state estimate in 10°m?/s = 1Sv
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» Streamfunction ¢ in Sv = 106 m?/s from simple Sverdrup relation

> Streamfunction 1 for a realistic model of the Atlantic Ocean

40°N

o

100°w 80°W 60°W 40°W 20°W 0

> simple Sverdrup relation works surprisingly well
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Recapitulation

Wind driven circulation

Sverdrup meets Ekman
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> vertically integrated momentum equation

o [° oP
—pofV = pdz +75=—— 4717
h X

S ox )

g [° P
U = —— d y=_2" 4+
po GY[hpZ+Ta 8y+Ta
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> vertically integrated momentum equation

o [° . oP

—pofV = 7& 7hde+Ta :75 +7‘a
o [° oP

pofU = —@[hde‘FTg/E—w‘FT;

» split in Ekman transport Ug und geostrophic transport Ug
—pofV = —pof (Vo + VE) = ———+75

pofUEpof(U(;—l-UE) = —74—7'3/
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> vertically integrated momentum equation

o [° oP
o - _ d X — 7 X
pofV I 7hp z+7; ox T
o [° oP
poflU = —@[hpdz+rg’z—w+rg’
» split in Ekman transport Ug und geostrophic transport Ug
oP
—pofV = —pof (Vo + VE) = ~ oK + 77
oP
pofU = pof (Ug + Ug) = 3y +7)

» with Ekman transport

7p0fVE:T:, pofUE:Tg — pokaUE:Ta — pofUEszXTa
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> vertically integrated momentum equation

o [° . oP

—pofV = 7& 7hde+Ta :76X+7_a
o [° oP

pofU = —@[hde‘FTg/E—w‘FT;

» split in Ekman transport Ug und geostrophic transport Ug

—pofV = —pof (Vg + Ve) = _54-7'3
oP
pofU = pof (Ug + Ug) = —@-1-72{

» with Ekman transport
7p0fVE:T:, pofUE:Tg — pofk)( UE:Ta — pofUEszXTa

» and with geostrophic transport

P P
%,pofUG:—af — pofUG:kXVhP

—0fVe = —
PotVe 9 ay
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> vertically integrated momentum equation

o [° oP

o - _ d X — 7 X

pofV I 7hp z+7; ox T
o [° oP

poflU = —@[hpdz+rg’z—w+rg’

» split in Ekman transport Ug und geostrophic transport Ug

oP

—pofV = —pof (Vo + VE) = ~ oK + 77
oP

pofU = pof (Ug + Ug) = 3y +7)

» with Ekman transport
7p0fVE:T:, pofUE:Tg — pofk)( UE:Ta — pofUEszXTa

» and with geostrophic transport

P oP
—pofVG = —87 s pofUG = -7 — pofUG =k x VP

0 dy

» Ekman transport + geostr. transport = Sverdrup transport
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» Ekman transport + geostr. transport = Sverdrup transport
» with Ekman transport
—pofVe =715 , pofUe =7 , pofUe=—kxT,

» and geostrophic transport

oP oP
7p0fVG:77 s pofUszf s pofUG:kXVhP
Ox dy

37/ 39
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» Ekman transport + geostr. transport = Sverdrup transport
» with Ekman transport
—pofVe =715 , pofUe =7 , pofUe=—kxT,

» and geostrophic transport

oP oP
—pofVo = ——= , pofUc = ——— , pofUc =k x VP
Ox dy
> both transports are divergent
Vh~UE = —Vh'kXTa:kXVh-Ta:WE

pof pof

37/ 39
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v

Ekman transport + geostr. transport = Sverdrup transport
» with Ekman transport
—pofVe =715 , pofUe =7 , pofUe=—kxT,

» and geostrophic transport

oP oP
—pofVo = ——= , pofUc = ——— , pofUc =k x VP
Ox dy
> both transports are divergent
Vh~UE = —Vh'kXTa:kXVh-Ta:WE
pof pof

o b _ (PN B (oP1N PO (1
e T Tox \ By pof dy \ Ox pof )] Ox Oy \ pof
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» Ekman transport + geostr. transport = Sverdrup transport
» with Ekman transport
—pofVe =715 , pofUe =7 , pofUe=—kxT,

» and geostrophic transport

oP oP
7p0fVG:767 s pofUszf s pofUG:kXVhP
X dy
> both transports are divergent
Vh~UE = —Vh'kXTa:kXVh-Ta:WE
pof pof
g (0P 1 0 (0P 1 oP 0 1
V, Us = —— 22— i et A
nue 3X(3ypof>+3y<3><pof) Ox dy (pof)
1 df oP B8 OP

Cpof2dy Ox  pof? dx
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» Ekman transport + geostr. transport = Sverdrup transport
» with Ekman transport
—pofVe =715 , pofUe =7 , pofUe=—kxT,

» and geostrophic transport

oP oP
7p0fVG:77 s pofUszf s pofUG:kXVhP
Ox dy
> both transports are divergent
Vh~UE = —Vh'kXTa:kXVh-Ta:WE
pof pof
g (0P 1 0 (0P 1 oP 0 1
V, Us = —— 22— i et A
nue 3X(3ypof>+3y<3><pof) Ox dy (pof)
1 df OP B8 OP B

Cpof2dy Ox  pof20x  f
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» Ekman transport + geostr. transport = Sverdrup transport
» with Ekman transport
—pofVe =715 , pofUe =7 , pofUe=—kxT,

» and geostrophic transport

oP oP
7p0fVG = 787 s pofUG ==, pofUG =k x VhP
X dy
> both transports are divergent
Vh~UE = —Vh'kXTa:kXVh-Ta:WE
pof pof
g (0P 1 0 (0P 1 oP 0 1
V, Us = —— 22— I G .
nue 3X(3ypof>+3y<3><pof) Ox dy (pof)
_ L dfop B OP_ P
 pof2dy Ox  pof20x  f ¢

> but the total transport U = Ug + Ug is non-divergent

Vy-U=0 — Wé—()ng\/c

Ekman pumping generates southward geostr. transport (for f > 0)
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» Ekman pumping generates southward geostr. transport (for f > 0)

Westerlies

East

Ekman
upwelling

Ekman

downwelling Northern Hemisphere

Ekman
upwelling

from Talley et al 2011
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39/ 39
» Sverdrup relation follows from potential vorticity conservation
> potential vorticity equation for a single layer

Dq ¢+ f fo
o - ~(——h+f
Dt , q L ord ¢ e

q is conserved for fluid parcels in single layer

> we lead to vortex stretching and meridional motion

W, >0,

W,

=
c
N3
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