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I now include also pressure gradient ∇hp

I momentum equation in vector form for Ro � 1

f k × u = − 1

ρ0
∇hp +

1

ρ0

∂τ

∂z
with k × u = (−v , u, �0)

I τ = (τ x , τ y ) is a stress vector with τ (z = 0) = τ a where τ a is the
surface wind stress in N/m2 acting on the ocean

I split the flow into geostrophic and frictional (Ekman) components,

u = uG + uE (and w = wG + wE ), governed by

f k × uG = − 1

ρ0
∇hp and f k × uE =

1

ρ0

∂τ

∂z

and the same for continuity equation

∇ · uG +
∂wG

∂z
= 0 and ∇ · uE +

∂wE

∂z
= 0

I sum uG + uE satisfies full momentum and continuity equation
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I Elementarstromsystem (for ρ = const)

I u = uG + uE (and w = wG + wE )

surface and bottom Ekman layers superimposed on geostrophic flow
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I vertically integrated velocity

U =

∫ 0

−h

u dz =

∫ 0

−h

(uG + uE ) dz = UG + UE

I with the (total) transport vector U , dimension m2s−1

I transport by the geostrophic velocity → geostrophic transport UG

transport by the Ekman velocity → Ekman transport UE

f k × uE =
1

ρ0

∂τ

∂z

f k ×
∫ 0

−h

uE dz =
1

ρ0
(τ (z = 0)− τ (z = −h))

f k ×UE =
1

ρ0
(τ a − τ b)

with surface wind stress τ a and bottom stress τ b

I with k × (k ×U) = k × (−V ,U, 0) = (−U,−V , 0) = −U

UE = − 1

f ρ0
k × (τ a − τ b)

I split UE into surface and bottom Ekman transport
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I vertically integrated velocity U = UG + UE with geostrophic
transport UG and Ekman transport UE given by

UE = − 1

f ρ0
k × (τ a − τ b) ≡ U top

E + Ubot
E

with surface wind stress τ a and bottom stress τ b

I split into surface Ekman transport in surface Ekman layer

U top
E = − 1

f ρ0
k × τ a

orthogonal to wind stress direction (to the right for f > 0)

does not depend on parameterisation of τ in the interior

I and bottom Ekman transport in bottom Ekman layer

Ubot
E =

1

f ρ0
k × τ b

depends on parameterisation of τ in the interior
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I Elementarstromsystem

I u = uG + uE (and w = wG + wE )

surface and bottom Ekman layers superimposed on geostrophic flow



Wind driven circulation Ekman transport 7/ 24

I zonal (left) and meridional component (right) of τ a in 10−2 N/m2

I surface Ekman transport in surface Ekman layer

U top
E = − 1

f ρ0
k × τ a

orthogonal to wind stress direction (to the right for f > 0)

I equatorward in west wind region poleward in trade wind region

I convergence between west wind and trade wind region

I divergence at high latitude and at equator
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I momentum equation in vector form for Ro � 1

f k × u = − 1

ρ0
∇hp +

1

ρ0

∂τ

∂z
with k × u = (−v , u, �0)

I τ = (τ x , τ y ) is a stress vector with τ (z = 0) = τ a where τ a is the
surface wind stress in N/m2 acting on the ocean

I split the flow into geostrophic and frictional (Ekman) components,

u = uG + uE (and w = wG + wE ), governed by

f k × uG = − 1

ρ0
∇hp and f k × uE =

1

ρ0

∂τ

∂z

and the same for continuity equation

∇ · uG +
∂wG

∂z
= 0 and ∇ · uE +

∂wE

∂z
= 0

I sum uG + uE satisfies full momentum and continuity equation
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I integrating the continuity equation for uE and wE from z to z = 0

∇ · uE +
∂wE

∂z
= 0

yields the vertical Ekman velocity∫ 0

z

∇ · uE dz +�����wE (z = 0)− wE (z) = 0 → wE (z) = ∇ ·
∫ 0

z

uE dz

I Ekman velocity is given by

uE = D/(2Av )ez/D ((τ a − k × τ a) cos(z/D) + (τ a + k × τ a) sin(z/D))

I since uE ≈ 0 below Ekman depth D ≈ 50m

wE |z<−D ≈∇ ·
∫ 0

z<−D

uE dz = ∇ ·U top
E = −∇ · 1

f ρ0
k × τ a = k ×∇ · τ

a

ρ0f

with Ekman pumping wE |z<−D and

k ×∇ · τ =

(
− ∂

∂y
∂
∂x

)
·
(
τ (x)

τ (y)

)
= − ∂

∂y
τ (x) +

∂

∂x
τ (y)

=

( ∂
∂x
∂
∂y

)
·
(

τ (y)

−τ (x)
)

= ∇ · (−k × τ )
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I Ekman pumping wE in m per year

wE |z<−D ≈∇ ·U top
E = k ×∇ · τ

a

ρ0f

with Ekman depth D ≈ 50m (depends on Av )

I Ekman transport U top
E and pumping wE do not depend on Av
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I Ekman pumping wE

wE |z<−D ≈∇ ·U top
E

i.e. wE from divergence of
Ekman transport

I wE > 0: Upwelling

I subpolar gyre
I at eastern boundaries
I at equator

I wE < 0: Downwelling

I subtropical gyres
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I coastal upwelling

from Talley et al 2011
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I equatorial upwelling

from Talley et al 2011
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I momentum equation for Ro � 1

f k × u = − 1

ρ0
∇hp +

1

ρ0

∂τ

∂z
with k × u = (−v , u, 0)

I neglect sea surface height z = ζ → assume rigid lid at z = 0

I assume flat bottom at z = −h = const

I vertically integrate momentum equation from bottom to surface

ρ0f k ×U = −∇h

∫ 0

−h

pdz + τ a − τ b

with transport U =
∫ 0

−h
udz , surface and bottom stress τ a and τ b

I take curl which yields (after a little calculation)

ρ0βV + ρ0f∇h ·U = k ×∇ · (τ a − τ b)

with β = df /dy

I since ∇h ·U = 0 from continuity equation ∇h · u + ∂w/∂z = 0

it follows the famous Sverdrup relation

ρ0βV = k ×∇ · (τ a − τ b)
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I little calculation: curl of vertically integrated momentum equation

ρ0f k ×U = −∇h

∫ 0

−h

pdz + τ a − τ b

I rewrite component wise

−ρ0fV = − ∂

∂x

∫ 0

−h

pdz + τ xa − τ xb , ρ0fU = − ∂

∂y

∫ 0

−h

pdz + τ ya − τ
y
b

I ∂/∂y of 1. equation minus ∂/∂x of 2. equation

− ∂

∂y
(ρ0fV ) = − ∂2

∂x∂y

∫ 0

−h

pdz +
∂

∂y
(τ xa − τ xb )

ρ0f
∂U

∂x
= − ∂2

∂x∂y

∫ 0

−h

pdz +
∂

∂x
(τ ya − τ

y
b )

− ρ0
df

dy
V − ρ0f

∂V

∂y
− ρ0f

∂U

∂x
=

∂

∂y
(τ xa − τ xb )− ∂

∂x
(τ ya − τ

y
b )

− ρ0βV − ρ0f∇h ·U = −k ×∇ · (τ a − τ b)

with β = df /dy and k ×∇ = (−∂/∂y , ∂/∂x , 0)
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I since ∇h ·U = 0 introduce volume transport streamfunction, with

U = −∂ψ
∂y

, V =
∂ψ

∂x
→ U = k ×∇ψ

transport U is parallel to contour lines of ψ

I ψ determines transport perpendicular to or ”across” section A→ B∫ B

A

U · ds =

∫ B

A

k ×∇ψ · ds =

∫ B

A

∇hψ · d` = ψ(B)− ψ(A)

where ds is a line element perpendicular to section A→ B

and d` is line element along section A→ B

I Sverdrup relation becomes (for τ b = 0)

ρ0β V = ρ0β
∂ψ

∂x
= k ×∇ · τ a

I integration from x to eastern boundary (x = xE ) where ψ(xE ) = 0

ψ(x , y) = − 1

ρ0β

∫ xe

x

k ×∇ · τ a dx

→ Sverdrup streamfunction
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I Sverdrup streamfunction

ψ = − 1

ρ0β

∫ xe

x

k ×∇ · τ a dx

from realistic wind stress in 106 m3/s ≡ 1 Sv

I ψ(xE ) = 0 along east eastern boundary but not at western boundary

→ western boundary current not included

I but in the interior ψ is rather realistic
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I ψ in a global state estimate in 106 m3/s ≡ 1 Sv
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I Streamfunction ψ in Sv = 106 m3/s from simple Sverdrup relation

I Streamfunction ψ for a realistic model of the Atlantic Ocean

a) b)

I simple Sverdrup relation works surprisingly well
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I vertically integrated momentum equation

−ρ0fV = − ∂

∂x

∫ 0

−h

pdz + τ xa ≡ −
∂P

∂x
+ τ xa

ρ0fU = − ∂

∂y

∫ 0

−h

pdz + τ ya ≡ −
∂P

∂y
+ τ ya

I split in Ekman transport UE und geostrophic transport UG

−ρ0fV ≡ −ρ0f (VG + VE ) = −∂P
∂x

+ τ xa

ρ0fU ≡ ρ0f (UG + UE ) = −∂P
∂y

+ τ ya

I with Ekman transport

−ρ0fVE = τ xa , ρ0fUE = τ ya → ρ0f k ×UE = τ a → ρ0f UE = −k × τ a

I and with geostrophic transport

−ρ0fVG = −∂P
∂x

, ρ0fUG = −∂P
∂y
→ ρ0f UG = k ×∇hP

I Ekman transport + geostr. transport = Sverdrup transport
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I Ekman transport + geostr. transport = Sverdrup transport

I with Ekman transport

−ρ0fVE = τ xa , ρ0fUE = τ ya , ρ0f UE = −k × τ a

I and geostrophic transport

−ρ0fVG = −∂P
∂x

, ρ0fUG = −∂P
∂y

, ρ0f UG = k ×∇hP

I both transports are divergent

∇h ·UE = −∇h · k ×
τ a

ρ0f
= k ×∇h ·

τ a

ρ0f
= wE

∇h ·UG = − ∂

∂x

(
∂P

∂y

1

ρ0f

)
+

∂

∂y

(
∂P

∂x

1

ρ0f

)
=
∂P

∂x

∂

∂y

(
1

ρ0f

)
= − 1

ρ0f 2
df

dy

∂P

∂x
= − β

ρ0f 2
∂P

∂x
= −β

f
VG

I but the total transport U = UE + UG is non-divergent

∇h ·U = 0 → w top
E =

β

f
VG

Ekman pumping generates southward geostr. transport (for f > 0)
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I Ekman pumping generates southward geostr. transport (for f > 0)

from Talley et al 2011
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I Sverdrup relation follows from potential vorticity conservation

I potential vorticity equation for a single layer

Dq

Dt
= 0 , q =

ζ + f

h
or q ≈ ζ − f0

H
h + f

q is conserved for fluid parcels in single layer

I wE lead to vortex stretching and meridional motion
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