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I Euler’s relation

δC

δt
→
(
∂

∂t
C

)
parcel

=
∂

∂t
C + u ·∇C ≡ D

Dt
C

I D/Dt = ∂/∂t + u ·∇ is often called ’material’ or ’substantial’
derivative

I local rate of change plus change implied by advection of fluid

I if DC/Dt = 0, property C of parcels does not change, it’s
conservative (but locally C might change in time)

I Lagrangian frameworks uses left hand side of DC/Dt

Eulerian framework uses right hand side of DC/Dt

both are equivalent but Eulerian framework is often more convenient
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I consider volume V , fixed in space and bounded by a surface A

I and a scalar fluid property C concentration

(in units of C per kg sea water or ρC in units of C per m3)

I total amount of the property C in V is given by
∫
V
ρC dV and may

change in time by two ways:

I by a flux across surface A
I by an interior source or sink

I conservation equation for property concentration C

∂

∂t
ρC = −∇ · (ρCu + J) + Q , ρ

DC

Dt
= −∇ · J + Q

flux form and parcel form
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I general conservation law in flux form

∂

∂t
ρC = −∇ · (ρCu + J) + Q

I take C = 1( kg /kg sea water), → ρC becomes total mass per m3

I total mass has no source → Q = 0 and J = 0

I mass conservation or continuity equation

∂ρ

∂t
= −∇ · ρu

I possible to rewrite flux form (above) to parcel form

∂ρ

∂t
+ u ·∇ρ ≡ Dρ

Dt
= −ρ∇ · u

I with specific volume v = 1/ρ continuity equation becomes

Dρ

Dt
=

D

Dt
v−1 = − 1

v2

Dv

Dt
= − 1

v
∇ · u

→ ρ
Dv

Dt
= ∇ · u

parcel form of continuity equation
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I general conservation law in flux form

∂

∂t
ρC = −∇ · (ρCu + J) + Q

I salt conservation equation with C = S , Q = 0 but J = JS

∂

∂t
ρS = −∇ · (ρSu + JS)

with salt flux JS by molecular diffusion

I rewrite to parcel form given by

ρ
∂S

∂t
+ S

∂ρ

∂t
= −∇ · ρSu −∇ · JS

ρ
∂S

∂t
+ S

∂ρ

∂t
= −ρu ·∇S − S∇ · ρu −∇ · JS

ρ
DS

Dt
= −∇ · JS

using continuity equation ∂ρ/∂t = −∇ · ρu times S
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I general conservation equation

∂

∂t
ρC = −∇ · (ρCu + J) + Q , ρ

DC

Dt
= −∇ · J + Q

flux form and parcel form

I flux form for momentum component ui = C

∂

∂t
ρui = −∇ ·

(
ρuiu + J(i)

)
+ Qi

I parcel form for momentum component ui

ρ
Dui
Dt

= −∇ · J(i) + Qi

= − ∂

∂xj
J

(i)
j + Qi

I in vector form and with (stress) tensor −Πji = J
(i)
j

ρ
Du
Dt

= ∇ ·Π + Q

I ∇ ·Π and Q are forces (per volume) acting on the water parcel
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I balance of momentum in parcel form

ρ
Du
Dt

= ∇ ·Π + f v = −∇p + ∇ ·Σ + f v

with the (mechanical) pressure as the mean normal inward stress

p = −1

3
(Π11 + Π22 + Π33) = −1

3
Πii = −1

3
tr Π

I Newtonian fluid: relation between friction and velocity shear

Σij = ν

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂u`
∂x`

δij

)
with the (dynamical) viscosity ν

I Navier-Stokes equation for Newtonian fluid (and constant ν)

ρ
Du
Dt

= −∇p + ν∇2u +
ν

3
∇(∇ · u) + f v
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I conservation equation for in situ temperature T

ρcp
DT

Dt
= αT

Dp

Dt
+
∂H

∂S
∇ · JS −∇ · JH + ρε

with enthalpy H, specific heat cp = ∂H/∂T , thermal expansion
coefficient α = −1/ρ ∂ρ/∂T , kinetic energy dissipation ρε = Σ2

ij

and molecular diffusive enthalpy flux JH

I assume adiabatic conditions, i.e. JS = 0, JH = 0 and ε = 0

ρcp
DT

Dt
− αT Dp

Dt
= 0

or
DT

Dt
= Γ

Dp

Dt

with adiabatic lapse rate Γ = αT/(ρcp)

I in situ temperature is not ”conserved”

I changes in temperature and pressure are related by dT = Γdp

I adiabatic lapse rate can also be defined by Γ = (∂T/∂p)ad

I typical value is Γ ≈ 10−8 K/Pa = 10−4 K/dbar ∼ 0.1K/km
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I use equation for ”conservative temperature” Θ instead

ρ
DΘ

Dt
=

(
θ

T

∂H

∂S
− ∂H0

∂S

)
∇ · JS

c?p
+
θ

T

(
−∇ · JH

c?p
+ ρ

ε

c?p

)
with ”potential enthalpy” H0 = H(p = pref ), reference specific heat
c?p = const, ”potential temperature” θ = ∂H0/∂η (with entropy η)

I now assume θ/T ≈ 1 with relative error of 10−3

I neglect effect of salt fluxes compared to heat flux term JH

I neglect effect of dissipation compared to heat flux term

I get temperature equation containing the divergence of JH

ρ
DΘ

Dt
= −∇ · JΘ + very small source term

with JΘ = JH/c
?
p
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I a new coordinate system rotates with Ω

DX
Dt

= u = urot + Ω× X

→ DX
Dt

=

(
D

Dt

)rot

X + Ω× X

velocity within the rotating frame is urot

= (D/Dt)rotX
temporal change within the rotating frame is (D/Dt)rot

I for the acceleration, Du/Dt = D2X/Dt2 we find

Du
Dt

=
Durot

Dt
+ Ω× DX

Dt

=

(
D

Dt

)rot

urot + Ω× urot + Ω×
(
urot + Ω× X

)
=

(
D

Dt

)rot

urot + 2Ω× urot + Ω× (Ω× X )

I Du/Dt is the acceleration of the fluid element in the absolute frame

(D/Dt)roturot is the acceleration measured by a co-rotating observer

I two additional (apparent) forces: Coriolis and centrifugal force
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I momentum equation in rotating frame

ρ
Du
Dt

= ρ

(
D

Dt

)rot

urot + 2ρΩ× urot + ρΩ× (Ω× X )

= −∇p + ∇ ·Σ + f v

I or, dropping the index rot from now on

ρ
Du
Dt

= −∇p − 2ρΩ× u + ∇ ·Σ + f v − ρΩ× (Ω× X )

I with the Coriolis force −2ρΩ× u

I and the centrifugal force −ρΩ× (Ω× X )

I The combined force in the equation of motion is given by

−ρΩ× (Ω× X )− ρ∇ΦE = −ρ∇Φ
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Summary conservation laws

I momentum equation

ρ
Du
Dt

= −∇p − 2ρΩ× u + ∇ ·Σ − ρ∇(Φ + Φtide)

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I continuity equation

Dρ

Dt
= −ρ∇ · u , ρ

Dv

Dt
= ∇ · u

I salt conservation equation

ρ
DS

Dt
= −∇ · JS

I conservative temperature equation

ρ
DΘ

Dt
= −∇ · JΘ + very small source term

I equation of state with conservative temperature as state variable

ρ = ρ(S ,Θ, p)
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I Continuity equation or conservation of mass

∂ρ

∂t
= −∇ · (ρu)

I introduce scaled variables with primes

ρ = ρ0ρ , u = Uu′ , x = Lx ′ , t = Tt ′

with the dimensionless functions ρ′, u′, etc of O(1)

with constants ρ0, U taking dimensions and magnitudes

and with ∂/∂t = (1/T )∂/∂t ′, and ∂/∂x = (1/L)∂/∂x ′, etc

I this yields

ρ0

T

∂ρ′

∂t ′
= −ρ0U

L
∇′ · (ρ′u′)

∂ρ′

∂t ′
= −UT

L
∇′ · (ρ′u′)

I now forget all primes

∂ρ

∂t
= −UT

L
∇ · (ρu)
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I equation of state for seawater

ρ = ρ(S ,T , p)

function of salinity S , temperature T and pressure p

I no analytical (exact) expressions for the function ρ(S ,T , p)

I empirical expressions with relative accuracy of (3− 5)× 10−6

→ TEOS: http://www.teos-10.org/

ρ(S ,T , p = 0Pa) ρ(S ,T , p = 1000dbar = 107 Pa)
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I Continuity equation or conservation of mass

∂ρ

∂t
= −∇ · (ρu)

I better scaling than ρ = ρ0ρ
′ is given by ρ = ρ0 + %ρ′

with a large mean value ρ0 = 1000 kg/m3

plus small variations with magnitude % = 10 kg/m3

I this yields in the continuity equation

1

T

∂

∂t ′
(ρ0 + %ρ′) = −U

L
∇′ · ((ρ0 + %ρ′)u′)

∂ρ′

∂t ′
= −ρ0

%

UT

L
∇′ · u′ − UT

L
∇′ · (ρ′u′)

I since ρ0/%� 1 and rest of O(1) (as long as UT/L ≥ O(1) )

it follows that

∂ρ

∂t
= −∇ · (ρu) → ∇ · u ≈ 0 : Boussinesq approximation

mass conservation is replaced by volume conservation
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I momentum equation (without friction and tides)

ρ
Du
Dt

= −∇p − 2ρΩ× u − ρ∇Φ

I using ρ = ρ0 + %ρ′ yields

(ρ0 + %ρ′)
Du
Dt

= −∇p − 2(ρ0 + %ρ′)Ω× u − (ρ0 + %ρ′)∇φ

I consider 3. component for u = 0 and φ = gz

∂p

∂z
= −(ρ0 + %ρ′)g ≈ −ρ0g

I motivates to set p ≡ p0(z) + p′ with p0 � p′ and to set

∂p0

∂z
≡ −ρ0g

hydrostatic balance of p0 with constant density ρ0

I momentum equation becomes

(ρ0 + %ρ′)
Du
Dt

= −∇(p0(z) + p′)− 2(ρ0 + %ρ′)Ω× u − (ρ0 + %ρ′)∇φ
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I consider a column of the ocean

M

A(p+  p)δ

δ Ap

δ z

(z)ρ

δ
I pressure force at bottom

FB = pδA

I pressure force at top

FT = −(p + δp)δA

≈ −(p +
∂p

∂z
δz)δA

(positive upward)

I mass of cylinder is M = ρδAδz and gravity force is Fg = −gM
I if no other forces act and column does not accelerate

FB + FT + Fg = 0 → pδA− (p +
∂p

∂z
δz)δA− gρδAδz = 0

or

−∂p
∂z
− gρ = 0 → hydrostatic balance
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I momentum equation becomes

(ρ0 + %ρ′)
Du
Dt

= −∇(p0(z) + p′)− 2(ρ0 + %ρ′)Ω× u − (ρ0 + %ρ′)∇φ

I since by construction

−∂p0

∂z
− gρ0 = 0 or −∇p0(z)− ρ0∇φ = 0

background gravity and vertical pressure gradient completely drop

I since ρ0 � % momentum equation further simplifies to

ρ0
Du
Dt

≈ −∇p′ − 2ρ0Ω× u − %ρ′∇φ

finally set p′ → p and %ρ′ → ρ

but remember that pressure p and density ρ are now perturbations

I salinity equation with ρ = ρ0 + %ρ′ becomes

(ρ0 + %ρ′)
DS

Dt
= −∇ · JS → ρ0

DS

Dt
≈ −∇ · JS

and similar for temperature
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Summary exact conservation laws

I momentum equation

ρ
Du
Dt

= −∇p − 2ρΩ× u + ∇ ·Σ − ρ∇(Φ + Φtide)

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I continuity equation

Dρ

Dt
= −ρ∇ · u , ρ

Dv

Dt
= ∇ · u

I salt conservation equation

ρ
DS

Dt
= −∇ · JS

I conservative temperature equation

ρ
DΘ

Dt
= −∇ · JΘ + very small source term

I equation of state with conservative temperature as state variable

ρ = ρ(S ,Θ, p)
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Conservation laws in Boussinesq approximation

I momentum equation

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ∇ ·Σ − ρ∇(Φ + Φtide)

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I continuity equation

0 = ∇ · u

I salt conservation equation

ρ0
DS

Dt
= −∇ · JS

I conservative temperature equation

ρ0
DΘ

Dt
= −∇ · JΘ + very small source term

I equation of state with conservative temperature as state variable

ρ = ρ(S ,Θ, p0)
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Recapitulation
Euler/Lagrange framework
General conservation equation
Continuity or mass conservation equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation
Rotating earth

Approximations and simplifications
Boussinesq approximation
Hydrostatic approximation
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I scale continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 → U

L

(
∂u′

∂x ′
+
∂v ′

∂y ′

)
+

W

H

∂w ′

∂z ′
= 0

with lateral scale L and vertical scale H

and lateral velocity scale U and vertical velocity scale W

I for W /H � U/L it follows that ∂w/∂z = 0

such that w = 0 considering bottom or top boundaries

→ scaling becomes inconsistent

I only cases W /H ∼ U/L or W /H � U/L are possible

I now define aspect ratio δ = H/L (”deepness” of the flow) with

W = UH/L = δU

which means that for δ ∼ 1 → W ∼ U and for δ � 1 → W � U

I since δ � 1 for large-scale flow in the ocean W � U

i.e. shallow water yields small (but still important!) w
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I momentum equation in rotating frame (no friction, no tides)

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ρ∇φ

I with Ω = (0,Ω cosϕ,Ω sinϕ)

Ω× u = Ω

 0
cosϕ
sinϕ

×
 u

v
w

 = Ω

 w cosϕ− v sinϕ
u sinϕ
−u cosϕ
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I aspect ratio δ = H/L� 1 , W = δU

I momentum equation in rotating frame (no friction, no tides)

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ρ∇φ

I consider first momentum equation

∂u

∂t
+ u ·∇u = − 1

ρ0

∂p

∂x
− 2Ω(w cosϕ− v sinϕ)

I scaling of each term yields

U

T
,

(
U2

L
,
WU

H

)
∼ P

ρ0L
, ΩW , ΩU

divide by ΩU to get magnitudes relative to (vertical) Coriolis force

1

TΩ
,

U

LΩ
∼ P

ρ0LΩU
, δ � 1 , 1
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I aspect ratio δ = H/L� 1 , W = δU

I consider first momentum equation

∂u

∂t
+ u ·∇u = − 1

ρ0

∂p

∂x
− 2Ω(w cosϕ− v sinϕ)

I scaling yields

1

TΩ
,

U

LΩ
∼ P

ρ0LΩU
, δ � 1 , 1

I set T = L/U and define Rossby number Ro = U/(LΩ)

Ro , Ro ∼ P

ρ0LΩU
, δ � 1 , 1

I Ro compares momentum advection with Coriolis force

for large-scale flow in the ocean Ro ≤ 1

I assume dominant geostrophic balance: P/(ρ0LΩU) = 1

but still keep terms of O(Ro) (but not those of O(δ))!
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I geostrophy: exact balance between pressure and Coriolis force

0 = − 1

ρ0

∂p

∂x
+ 2Ωv sinϕ

0 = − 1

ρ0

∂p

∂y
− 2Ωu sinϕ

sign of ϕ?

I thermal wind: combine with hydrostatic balance 0 = −∂p/∂z − gρ

0 =
g

ρ0

∂

∂x
ρ+ 2Ω

∂v

∂z
sinϕ

0 =
g

ρ0

∂

∂y
ρ− 2Ω

∂u

∂z
sinϕ

lateral density gradients are related to vertical shear of u and v

→ ”dynamical method” to determine ocean currents
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I aspect ration δ = H/L� 1 → W = δU

I momentum equation in rotating frame (no friction, no tides)

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ρ∇φ

I consider third momentum equation

∂w

∂t
+ u ·∇w = − 1

ρ0

∂p

∂z
+ 2u cosφ− ρg

ρ0

I scaling yields

W

T
,

(
UW

L
,
W 2

H

)
∼ P

ρ0H
, ΩU ,

%g

ρ0

I use W = δU and T = L/U and scaling for P = ρ0LΩU

δU2

L
,
δU2

L
∼ LΩU

H
, ΩU ,

%g

ρ0
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I consider third momentum equation

∂w

∂t
+ u ·∇w = − 1

ρ0

∂p

∂z
+ 2u cosφ− ρg

ρ0

I scaling yields

W

T
,

(
UW

L
,
W 2

H

)
∼ P

ρ0H
, ΩU ,

%g

ρ0

I use W = δU and T = L/U and scaling for P = ρ0LΩU

δU2

L
,
δU2

L
∼ LΩU

H
, ΩU ,

%g

ρ0
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I aspect ration δ = H/L� 1 → W = δU

I consider third momentum equation

∂w

∂t
+ u ·∇w = − 1

ρ0

∂p

∂z
+ 2u cosφ− ρg

ρ0

I scaling yields

δU2

L
,
δU2

L
∼ LΩU

H
, ΩU ,

%g

ρ0

I now multiply with δ and divide by ΩU

δ2U2

LΩU
= δ2Ro ,

δ2U2

LΩU
= δ2Ro ∼ 1 , δ ,

δ%g

ρ0ΩU
∼ 1

all magnitudes are now relative to vertical pressure force

I all terms except ∂p/∂z and gravity are O(δ) or smaller

I since δ � 1 neglect all terms except ∂p/∂z and gravity

→ hydrostatic approximation
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Summary hydrostatic approximation

I momentum equation in Boussinesq

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u − ρ∇Φ

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I becomes

ρ0
Du

Dt
= −∂p

∂x
+ 2ρ0Ωv sinφ

ρ0
Dv

Dt
= −∂p

∂y
− 2ρ0Ωu sinφ

0 = −∂p
∂z
− gρ

acceleration, advection, etc in 3. momentum equation neglected

I f = 2Ω sinφ is the Coriolis parameter

I other equations are unchanged → primitive equations
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Planetary geostrophic approximation

I momentum equation in Boussinesq

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u − ρ∇Φ

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I becomes for Rossby number Ro � 1

0 = −∂p
∂x

+ 2ρ0Ωv sinφ

0 = −∂p
∂y
− 2ρ0Ωu sinφ

0 = −∂p
∂z
− gρ

acceleration, advection, etc in all momentum equations neglected

I f = 2Ω sinφ is the Coriolis parameter

I other equations are unchanged
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