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» Euler’s relation
D
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ot Ot ) porcer O Dt
» D/Dt =0/0t+ u-V is often called 'material’ or 'substantial’

derivative
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v

Euler’'s relation

oC 0 0 D
E — (m_C)parcel = EC—FUVC: EC

» D/Dt =0/0t+ u-V is often called 'material’ or 'substantial’
derivative

> local rate of change plus change implied by advection of fluid
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Euler/Lagrange framework

>

Euler’'s relation

oC 0 0 D
E — (m_C)parcel = EC—FUVC: EC

D/Dt = 9/0t + u - V is often called "'material’ or 'substantial’

derivative
local rate of change plus change implied by advection of fluid

if DC/Dt = 0, property C of parcels does not change, it's
conservative (but locally C might change in time)

Lagrangian frameworks uses left hand side of DC/Dt
Eulerian framework uses right hand side of DC/Dt

both are equivalent but Eulerian framework is often more convenient
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» consider volume V/, fixed in space and bounded by a surface A
» and a scalar fluid property C concentration

(in units of C per kg sea water or pC in units of C per m%)
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> total amount of the property C in V is given by |, pC dV and may
change in time by two ways:
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Recapitulation

General conservation equation 6/ 39

consider volume V/, fixed in space and bounded by a surface A

and a scalar fluid property C concentration
(in units of C per kg sea water or pC in units of C per m%)
total amount of the property C in V is given by |, pC dV and may
change in time by two ways:
» by a flux across surface A
» by an interior source or sink
conservation equation for property concentration C
0 DC
—pC=-V-(pCu+J , p—
pri (pCut+)+Q , pp.
flux form and parcel form

=V J+Q
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Recapitulation

Continuity or mass conservation equation

Approximations and simplifications
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» general conservation law in flux form

0
apC:—V(pCu—I-J)-I-Q

» take C = 1( kg /kg sea water), — pC becomes total mass per m3
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» general conservation law in flux form

0
apC:—V(pCu—I-J)-I-Q

» take C = 1( kg /kg sea water), — pC becomes total mass per m3

> total mass has no source - @ =0and J =0
> mass conservation or continuity equation
dp

e~ Vo

> possible to rewrite flux form (above) to parcel form

D
+u-Vp= p_ —pV -u

9p Dp
Dt
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Recapitulation

>

Continuity or mass conservation equation

general conservation law in flux form

take C = 1( kg /kg sea water), — pC becomes total mass per m

0

a’c ="V

“(pCu+J)+

Q

total mass has no source -+ @ =0and J =0

mass conservation or continuity equation

—V - pu

possible to rewrite flux form (above) to parcel form

with specific volume v = 1/p continuity equation becomes

Dp _

Dt

D

Dt

dp
ot
dp
a-’- -Vp

71:

1 Dv

V2Dt

Dp

Dt

v

v

—pV - u

3
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Recapitulation

>

Continuity or mass conservation equation

general conservation law in flux form

0

atpC =-V - (pCu+J)+Q
take C = 1( kg /kg sea water), — pC becomes total mass per m
total mass has no source -+ @ =0and J =0

mass conservation or continuity equation

dp
O v
ot P
possible to rewrite flux form (above) to parcel form
Op _Dp

with specific volume v = 1/p continuity equation becomes

Dp D e 1 Dv Dv
Dt DY T D W T PV

parcel form of continuity equation

3
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Approximations and simplifications



Recapitulation Salinity and salt conservation

» general conservation law in flux form

0
apC:*V'(pCUJrJ)JrQ

» salt conservation equation with C =5, @ =0 but J = Js

0
aps =-V - (pSu+Js)

with salt flux Js by molecular diffusion
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» general conservation law in flux form

0
apC:*V'(pCUJrJ)JrQ

» salt conservation equation with C =5, @ =0 but J = Js

0
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with salt flux Js by molecular diffusion

» rewrite to parcel form given by
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» general conservation law in flux form

0
apC:*V'(pCUJrJ)JrQ

» salt conservation equation with C =5, @ =0 but J = Js

0
aps =-V - (pSu+Js)

with salt flux Js by molecular diffusion

» rewrite to parcel form given by

oS _op
pﬁ—i-sa = —V-pSU—V~J5
95 9p

pﬁ—i-sat = —pu~V5—5V~pu—V~J5
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» general conservation law in flux form

0
apC:*V'(pCUJrJ)JrQ

» salt conservation equation with C =5, @ =0 but J = Js

0
aps =-V - (pSu+Js)

with salt flux Js by molecular diffusion

» rewrite to parcel form given by

) dp
pa_i_sa = —-V:-pSu—-V-Js
p%—i_‘s% = —pu~V5—5V'PU_V'J5
DS
"o = TV

using continuity equation dp/0t = —V - pu times S
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Recapitulation
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Approximations and simplifications



Recapitulation Momentum or Navier Stokes equation 12/ 39

> general conservation equation

0 DC

flux form and parcel form

=V J+Q
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> general conservation equation

0 DC

flux form and parcel form

=V J+Q

» flux form for momentum component u; = C

%pu; = -V. (pu,-u + J(i)) + Qi
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> general conservation equation

0 DC

flux form and parcel form

=V J+Q

» flux form for momentum component u; = C
9 ()
pPu = -V (pu,-u—l—J ) + Qi

» parcel form for momentum component u;

DU,'

— _o. .
th V- -3+ Q;
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> general conservation equation

0 DC

flux form and parcel form

=V J+Q

» flux form for momentum component u; = C
9 M)
—pui = —V_- (pu,-u—l—J ) + Qi
ot
» parcel form for momentum component u;
0

Du; ; -
P v g0 =L 0 ;
"oy JV+ @ 8XjJJ + Qi
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> general conservation equation

0 DC

flux form and parcel form

=V J+Q

» flux form for momentum component u; = C

PPl -V (pu,-u + J(i)) + Qi

» parcel form for momentum component u;
0

Du; ; -
P v g0 =L 0 ;
"oy JV+ @ 8XjJJ + Qi

> in vector form and with (stress) tensor —[1; = .IJ.(i)

Du

Y wv.on
P De +Q



Recapitulation

>

v

v

v

Momentum or Navier Stokes equation

general conservation equation

0 DC
—pC = =V .(pC J —=-V.J
52" (pCu+N+Q , P Dr +Q
flux form and parcel form
flux form for momentum component u; = C
) .
o = _V. . () )
57U v (pu,u +J ) + Qi
parcel form for momentum component u;
Du; ; 0 i
! = — . (’) ;= — — (l) H
p Dt V-4 Q 8xJ~JJ + Qi

in vector form and with (stress) tensor —[1; = .IJ.(i)

Du

Y wv.on
P De +Q

V - M and Q are forces (per volume) acting on the water parcel
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Recapitulation Momentum or Navier Stokes equation

» balance of momentum in parcel form

D
p?ltl —V-N+f = Vp+rV-E +f

with the (mechanical) pressure as the mean normal inward stress

1 1 1
=—=(N Mn M33) = —=MN;=—=tr N
p 3( 11 + M2 + M33) 3 3t
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» balance of momentum in parcel form

Du

P e =V:-N+f' =-Vp+V.-X +f"

with the (mechanical) pressure as the mean normal inward stress

1 1 1
= —— (M + My +Ms3) = —=My = —=tr N
p 3( 11 + My + M33) 3 3 r

» Newtonian fluid: relation between friction and velocity shear

ou;  Ou;p  20uy
Y, = Py g L
Y V(6'Xj+8><; 38Xg61>

with the (dynamical) viscosity v



Recapitulation

>

Momentum or Navier Stokes equation

balance of momentum in parcel form

Du

P e =V:-N+f' =-Vp+V.-X +f"

with the (mechanical) pressure as the mean normal inward stress

1 1 1
=—=(N Mn M33) = —=MN;=—=tr N
p 3( 11 + M2 + M33) 3 3t

Newtonian fluid: relation between friction and velocity shear

ou;  Ou;p  20uy
Y. = ! J _ZZ7ES.
Y v (6‘)9- + Ox;  30xs 6”)

with the (dynamical) viscosity v
Navier-Stokes equation for Newtonian fluid (and constant v)

Du

o 2,4+ Y : v
P = Vp+vV u+3V(V u) +f
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» conservation equation for in situ temperature T

DT D, oH
pCpE:OéTFi+£VJS_VJH+p€
with enthalpy H, specific heat ¢, = dH/OT, thermal expansion
coefficient « = —1/pdp/IT, kinetic energy dissipation pe = Z,?j
and molecular diffusive enthalpy flux Jy
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» conservation equation for in situ temperature T

DT D, oH
pCpE:OCTFi+£VJS_VJH+p€
with enthalpy H, specific heat ¢, = dH/OT, thermal expansion
coefficient « = —1/pdp/IT, kinetic energy dissipation pe = Z,?j
and molecular diffusive enthalpy flux Jy

» assume adiabatic conditions, i.e. Js =0, Jy=0ande=0

D1 Dp
=z =P _
Py C”Dt 0



Recapitulation

>

Heat and temperature equation

conservation equation for in situ temperature T

DT Dp OH
e —aT2 4+ IV s -V J
P pr =@ Dt+55 s H ot pe

with enthalpy H, specific heat ¢, = dH/OT, thermal expansion

coefficient « = —1/pdp/IT, kinetic energy dissipation pe = Z,?j

and molecular diffusive enthalpy flux Jy
assume adiabatic conditions, i.e. Js =0, Jy=0ande=0

DT _ 7Dp_y DT _ Do

P Dr Dt “ Dt T Dt
with adiabatic lapse rate ' = a T /(pcp)
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Heat and temperature equation

conservation equation for in situ temperature T

DT Dp OH
e —aT2 4+ IV s -V J
P pr =@ Dt+55 s H ot pe

with enthalpy H, specific heat ¢, = dH/OT, thermal expansion

coefficient « = —1/pdp/IT, kinetic energy dissipation pe = Z,?j

and molecular diffusive enthalpy flux Jy
assume adiabatic conditions, i.e. Js =0, Jy=0ande=0

DT _ 7Dp_y DT _ Do

Cop—— or =
PP Dt Dt Dt Dt
with adiabatic lapse rate ' = a T /(pcp)
in situ temperature is not " conserved”

changes in temperature and pressure are related by dT = Tdp
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Heat and temperature equation

conservation equation for in situ temperature T

DT Dp OH
e —aT2 4+ IV s -V J
P pr =@ Dt+55 s H ot pe

with enthalpy H, specific heat ¢, = dH/OT, thermal expansion

coefficient « = —1/pdp/IT, kinetic energy dissipation pe = Z,?j

and molecular diffusive enthalpy flux Jy
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Heat and temperature equation

conservation equation for in situ temperature T

DT Dp OH
e —aT2 4+ IV s -V J
P pr =@ Dt+55 s H ot pe

with enthalpy H, specific heat ¢, = dH/OT, thermal expansion

coefficient « = —1/pdp/IT, kinetic energy dissipation pe = Z,?j

and molecular diffusive enthalpy flux Jy

assume adiabatic conditions, i.e. Js =0, Jy=0ande=0

DT _ . Dp _

DT D
pch—tfaT 0 or Y o

Dt Dt Dt

with adiabatic lapse rate ' = a T /(pcp)

in situ temperature is not " conserved”

changes in temperature and pressure are related by dT = Tdp
adiabatic lapse rate can also be defined by ' = (0T /0p),,
typical value is [ ~ 1078 K /Pa = 10~* K /dbar ~ 0.1 K /km
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Heat and temperature equation

Recapitulation

> use equation for " conservative temperature” © instead

Do 0 OH OH° Js % Ju
T (ws‘as)v'c,;+r(‘v'c;+

16/ 39

with " potential enthalpy” H® = H(p = p,r), reference specific heat

¢, = const, " potential temperature” 0 = OH®/dn (with entropy 7)

» now assume 0/ T = 1 with relative error of 103
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with " potential enthalpy” H® = H(p = p,r), reference specific heat
c; = const, " potential temperature” 6§ = 9H®/dn (with entropy 1)

now assume 6/ T ~ 1 with relative error of 1073

neglect effect of salt fluxes compared to heat flux term Jy
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Heat and temperature equation

use equation for " conservative temperature” © instead

DO 0 OH OH° Js 0 Ju
"or (ws‘as)v'c;+r(‘v'c;

16/ 39

with " potential enthalpy” H® = H(p = p,r), reference specific heat

p

now assume 6/ T ~ 1 with relative error of 1073
neglect effect of salt fluxes compared to heat flux term Jy

neglect effect of dissipation compared to heat flux term

c* = const, " potential temperature” § = 9H®/0n (with entropy 7)
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Heat and temperature equation 16/ 39

use equation for " conservative temperature” © instead

DO 0 OH OH° Js 0 Jy €
"Dr <T85_85>V'c;+T(_V'c;+pc;>

with " potential enthalpy” H® = H(p = p,r), reference specific heat
c* = const, " potential temperature” § = 9H®/0n (with entropy 7)

P
now assume 6/ T ~ 1 with relative error of 1073

neglect effect of salt fluxes compared to heat flux term Jy
neglect effect of dissipation compared to heat flux term

get temperature equation containing the divergence of Jy
D©
"Dt

with Jg = JH/C;

= —V -Jo + very small source term
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Recapitulation

Rotating earth

Approximations and simplifications
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> a new coordinate system rotates with

DX
— =u=u""+QxX
Dt

velocity within the rotating frame is u™*
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» for the acceleration, Du/Dt = D?X /Dt? we find

Du _ Du* o DX
Dt = Dt Dt
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> a new coordinate system rotates with

DX ot DX (D\™
E—u—u +QAxX — Dt_(Dt> X+QxX

velocity within the rotating frame is u™* = (D/Dt)"™* X
temporal change within the rotating frame is (D/Dt)"*

» for the acceleration, Du/Dt = D?X /Dt? we find

Du _ Du* o DX
Dt = Dt Dt
D rot
- (Dt> U+ QX +Q x (0 +Q x X)

rot
(;) u™ 4+ 2Q x U+ Q x (2 x X)

> Du/Dt is the acceleration of the fluid element in the absolute frame
(D/Dt)™tu"" is the acceleration measured by a co-rotating observer

> two additional (apparent) forces: Coriolis and centrifugal force
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» momentum equation in rotating frame

Du

D rot
"o = P (Dt) u™ +2pQ x u™ + pQ x (2 x X)

= —Vp+V-X +f'
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» momentum equation in rotating frame

Du

D rot
"o = P (Dt) u™ +2pQ x u™ + pQ x (2 x X)

= —Vp+V-X +f'

> or, dropping the index ™' from now on

Du

Poe = —Vp—202xu+V-X +f" —pQ x(Q2xX)
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» momentum equation in rotating frame

Du

D rot
"o = P (Dt) u™ +2pQ x u™ + pQ x (2 x X)

= —Vp+V-X +f'

v

or, dropping the index ™' from now on

Du

Poe = —Vp—202xu+V-X +f" —pQ x(Q2xX)

v

with the Coriolis force —2p€2 x u
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Rotating earth 19/ 39

momentum equation in rotating frame

Du

D rot
"o = P (Dt) u™ +2pQ x u™ + pQ x (2 x X)

= —Vp+V-X +f'

or, dropping the index ™' from now on

Du

Poe = —Vp—202xu+V-X +f" —pQ x(Q2xX)

with the Coriolis force —2p€2 x u

and the centrifugal force —p2 x (Q x X)



Recapitulation

Rotating earth

momentum equation in rotating frame
D D rot
pﬁlt' = p (Dt) u™ +2pQ x u™ + pQ x (2 x X)

= —Vp+V-X +f'

or, dropping the index ™' from now on
Du v
Por = —Vp—=2p2xu+V-X +Ff" —pQx(QxX)

with the Coriolis force —2p€2 x u
and the centrifugal force —p2 x (Q x X)

The combined force in the equation of motion is given by

—pQ X (X X)—pVdg = —pVO

19/ 39



Recapitulation

Rotating earth
Summary conservation laws

momentum equation
Du
"Dt
with geopotential (® = gz) and tidal potential ®44e(x, t)

=-Vp-20Qxu+V - —pV(®+ dyige)

continuity equation

Dp Dv
—=—pV.u, p—=V.u
bt~ " "Dt
salt conservation equation
DS
= —_v-J
P Dt S
conservative temperature equation
D©

pE = —V . Jgo + very small source term

equation of state with conservative temperature as state variable

p = p(5,0,p)
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Recapitulation

Approximations and simplifications
Boussinesq approximation
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» Continuity equation or conservation of mass

op
ot =V - (pu)



Approximations and simplifications

Boussinesq approximation
» Continuity equation or conservation of mass
Ip
o (pu)
» introduce scaled variables with primes

p=pp , u=Ud , x=1Lx" , t=T¢t
with the dimensionless functions p’, u’, etc of O(1)

with constants pg, U taking dimensions and magnitudes
and with 9/0t = (1/T)9/90t’, and 9/0x = (1/L)0/0x’, etc
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Approximations and simplifications Boussinesq approximation
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» Continuity equation or conservation of mass
Ip
V.- (pu
o (pu)

» introduce scaled variables with primes

p=pp , u=Ud , x=1Lx" , t=T¢t
with the dimensionless functions p’, u’, etc of O(1)

with constants pg, U taking dimensions and magnitudes
and with 9/0t = (1/T)9/90t’, and 9/0x = (1/L)0/0x’, etc

> this yields
PO UGy
Tor — LV W)
op’ uTt

“rF o _El o
57 v (p'u’)



Approximations and simplifications Boussinesq approximation

» Continuity equation or conservation of mass
op
ot

» introduce scaled variables with primes

=V - (pu)

p=pp , u=Ud , x=1Lx" , t=T¢t
with the dimensionless functions p’, u’, etc of O(1)

with constants pg, U taking dimensions and magnitudes
and with 9/0t = (1/T)9/90t’, and 9/0x = (1/L)0/0x’, etc

> this yields
PO UGy
Tor — LV W)
ap' o urt _, /o
a0 = v )
» now forget all primes
0 ut
L= —Z5V - (pu)

ot L
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Approximations and simplifications

temperature in Celsius

Boussinesq approximation

equation of state for seawater

p=p(5 T,p)

function of salinity S, temperature T and pressure p

no analytical (exact) expressions for the function p(S, T, p)

empirical expressions with relative accuracy of (3 —5) x 10~°
— TEOS: http://www.teos-10.org/

p(S, T,p=0Pa)

kg/m®
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[S)
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1024

o

1022

=3

1020

w
@

34 36

35
salinity in g/kg
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» Continuity equation or conservation of mass

op
I =V - (pu)
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» Continuity equation or conservation of mass

Ip

r__v.

i (pu)

> better scaling than p = pop’ is given by p = po + 0p’
with a large mean value py = 1000 kg/m3

plus small variations with magnitude o = 10kg/m?



Approximations and simplifications Boussinesq approximation

» Continuity equation or conservation of mass

Ip
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> better scaling than p = pop’ is given by p = po + 0p’
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» Continuity equation or conservation of mass

Ip

r__v.

i (pu)

> better scaling than p = pop’ is given by p = po + 0p’
with a large mean value py = 1000 kg/m3

plus small variations with magnitude o = 10kg/m?

» this yields in the continuity equation

1 0 / _ U / AW,
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P _  _Po Tl . R v O
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» Continuity equation or conservation of mass

Ip

r__v.

i (pu)

> better scaling than p = pop’ is given by p = po + 0p’
with a large mean value py = 1000 kg/m3

plus small variations with magnitude o = 10kg/m?

» this yields in the continuity equation

1 0 / _ U / AW
77&,(004-@0) = —7 V' ((po+ep)ur)
op' o pUT_, , UT_, ’or
aw = oY oV

> since pg/o0 > 1 and rest of O(1) (as long as UT/L > O(1))
it follows that
dp
Fri

mass conservation is replaced by volume conservation

-V . (pu) - V-u=0 : Boussinesq approximation
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> momentum equation (without friction and tides)
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> momentum equation (without friction and tides)
Du
— =-Vp—2pQ2 xu—pVe
T p—2pQxu—p
> using p = po + op’ yields

Du
(po + QP/)E =—Vp—2(po+ 00 )X u—(po+0p )V
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> momentum equation (without friction and tides)
D
p?;’ =—-Vp—-20Q xu—pVoP
> using p = po + op’ yields
Du
(po + QP/)E =—Vp—2(po+ 00 )X u—(po+0p )V
» consider 3. component for u =0 and ¢ = gz

Ip /
3 —(po + 00" )g = —pog
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> momentum equation (without friction and tides)
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9po

0z —Po8

hydrostatic balance of py with constant density pg
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> momentum equation (without friction and tides)
D
p?;’ =—-Vp—-20Q xu—pVoP

> using p = po + op’ yields

Du
(po + QP/)E =—Vp—2(po+ 00 )X u—(po+0p )V

» consider 3. component for u =0 and ¢ = gz

Ip /
3 —(po + 00" )g = —pog

> motivates to set p = po(z) + p’ with pp > p’ and to set
9po

0z —pPo&
hydrostatic balance of py with constant density pg

> momentum equation becomes

Du
(po + QP/)E = —V(po(2) + P') — 2(po + 0p' ) x u — (po + 00 )V
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» consider a column of the ocean

/(Mm > pressure force at bottom
v
FB = p5A
M 8z
p(2)
< pea
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» consider a column of the ocean

/(Mm > pressure force at bottom
v

FB = p5A

M 8z » pressure force at top
p(2)
dp
Fr=—(p+0p)dA~ —(p+ 5(Sz)(SA

 psA
LA (positive upward)
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» consider a column of the ocean

/(Mm > pressure force at bottom
v

FB = p5A

M 8z » pressure force at top
p(2)
dp
Fr=—(p+0p)dA~ —(p+ 5(Sz)(SA

 psA
LA (positive upward)

» mass of cylinder is M = pdAdz and gravity force is F, = —gM

» if no other forces act and column does not accelerate

Fe+Fr+F,=0 — plA—(p+ ?52)5A—gp6A62 =0
z

or

0
_ﬁip —gp=0 — hydrostatic balance
z
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> momentum equation becomes

Dt ==V (po(z) + p') = 2(po + 0p")2 x u — (po + 00" )V ¢

(0+QP)D
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> momentum equation becomes

(po+ 00" )5~ v =V (po(z) + p') = 2(po + 00" )2 x u — (po + 00" )V

Dt
> since by construction

0
—g—gpozo or  —Vpo(z) —poVg =0

background gravity and vertical pressure gradient completely drop
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> momentum equation becomes

(po+ 00" )5~ v =V (po(z) + p') = 2(po + 00" )2 x u — (po + 00" )V

Dt
> since by construction

0
—g—gpozo or  —Vpo(z) —poVg =0

background gravity and vertical pressure gradient completely drop
> since pp > ¢ momentum equation further simplifies to
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but remember that pressure p and density p are now perturbations



Approximations and simplifications Boussinesq approximation 27/ 39

> momentum equation becomes

(po+ 00" )5~ v =V (po(z) + p') = 2(po + 00" )2 x u — (po + 00" )V

Dt
> since by construction

0
—g—gpozo or  —Vpo(z) —poVg =0

background gravity and vertical pressure gradient completely drop
> since pp > ¢ momentum equation further simplifies to

Du
Po Dt
finally set p’ — p and gp’ — p

~ —Vp —2p0Q x u—0p' Vo

but remember that pressure p and density p are now perturbations
> salinity equation with p = po + op’ becomes

DS

DS
(po+0p) - =-V-Js — pop, ~ =V Is

Dt

and similar for temperature



Approximations and simplifications Boussinesq approximation 28/ 39
Summary exact conservation laws
> momentum equation
Du
"Dt
with geopotential (® = gz) and tidal potential ®44e(x, t)

=-Vp-20Qxu+V - —pV(®+ dyige)

> continuity equation

Dp Dv
—=—pV.u, p—=V.u
bt~ " "Dt
» salt conservation equation
DS
= —_v-J
P Dt S
> conservative temperature equation
D©
pﬁ = —V -Jo + very small source term

> equation of state with conservative temperature as state variable

p = p(5,0,p)
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Conservation laws in Boussinesq approximation
> momentum equation

Du
Popr = ~VP =20 xu+ VT —pV(+ Pige)

with geopotential (® = gz) and tidal potential ®44e(x, t)
> continuity equation

0=V-.u

> salt conservation equation

DS

=~ —-_v.J
Po Dt S
> conservative temperature equation

DO

poﬁ = —V - Jgo + very small source term

> equation of state with conservative temperature as state variable

p = P(S, o, PO)
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Recapitulation

Approximations and simplifications

Hydrostatic approximation
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> scale continuity equation

du dv ow_ . U(0w v\ Wow _
ox Oy 0z L H 0z

ox oy

0

with lateral scale L and vertical scale H

and lateral velocity scale U and vertical velocity scale W
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> scale continuity equation

ox oy

—+ 0+ =0

ox 0Oy 0z - L =0

ou Ov Ow Uu/od ov ﬂaw’
H oz
with lateral scale L and vertical scale H

and lateral velocity scale U and vertical velocity scale W
> for W/H > U/L it follows that Ow/9z =0

such that w = 0 considering bottom or top boundaries

— scaling becomes inconsistent



Approximations and simplifications Hydrostatic approximation 31/ 39

> scale continuity equation

ou Ov Ow U<8u’ 8v’> W ow’
2+ =0

ox 0Oy 0z - L =0

H 9z

ox oy

with lateral scale L and vertical scale H

and lateral velocity scale U and vertical velocity scale W
> for W/H > U/L it follows that Ow/9z =0

such that w = 0 considering bottom or top boundaries

— scaling becomes inconsistent

> only cases W/H ~ U/L or W/H < U/L are possible
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> scale continuity equation

@Jr@JrafW—O U iu’Jrav' W ow’
ox' Oy’

ox 0Oy 0z - L =0

H 9z

with lateral scale L and vertical scale H
and lateral velocity scale U and vertical velocity scale W

> for W/H > U/L it follows that Ow/9z =0
such that w = 0 considering bottom or top boundaries

— scaling becomes inconsistent
> only cases W/H ~ U/L or W/H < U/L are possible

> now define aspect ratio § = H/L ("deepness” of the flow) with
W =UH/L=4U

which means thatfor6 ~1 — W~ Uandford <1l — WU
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>

scale continuity equation

@4,@4,@—0 N g 871/4,8\// WaWI
ox Oy 0z L \ox 0y

with lateral scale L and vertical scale H

and lateral velocity scale U and vertical velocity scale W
for W/H > U/L it follows that Ow/0z =0

such that w = 0 considering bottom or top boundaries

— scaling becomes inconsistent

only cases W/H ~ U/L or W/H < U/L are possible

now define aspect ratio d = H/L (" deepness’ of the flow) with

W = UH/L = §U

which means thatfor6 ~1 — W~ Uandford <1l — WU

since § < 1 for large-scale flow in the ocean W <« U

i.e. shallow water yields small (but still important!) w

H 9z

0

31/ 39
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> momentum equation in rotating frame (no friction, no tides)

Du

o = —Vp—2pR2 xu+pVe

Equator

South
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> momentum equation in rotating frame (no friction, no tides)

Du

o = —Vp—2pR2 xu+pVe

> with Q = (0,Qcos ¢, Qsin p)

0 u W Cosp — vsingp
Qxu = Q| cosp | x v | =Q usin g
sin g w — U CoS ¢

Equator

South
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> aspectratiod = H/L<1 , W=4§U
> momentum equation in rotating frame (no friction, no tides)

Du

o = —Vp—2pR2 xu+pVe
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> aspectratiod = H/L<1 , W=4§U
> momentum equation in rotating frame (no friction, no tides)

Du

o = —Vp—2pR2 xu+pVe

» consider first momentum equation

% +u-Vu= 7%% —2Q(w cos p — vsinp)
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> aspectratiod = H/L<1 , W=4§U
> momentum equation in rotating frame (no friction, no tides)

Du

o = —Vp—2pR2 xu+pVe

» consider first momentum equation

% +u-Vu= 7%% —2Q(w cos p — vsinp)

» scaling of each term yields
U Uz wu P
= —_— — ~ — QW ., QU
T’ ( L’ H ) pol ’
divide by QU to get magnitudes relative to (vertical) Coriolis force

1 v P

TQ ' [Q © plQU
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> aspectratiod =H/L<1 , W=4§U
» consider first momentum equation

1
% +u-Vu= _pogi —2Q(wcosp — vsinp)

> scaling yields

1 U P

TQ 19 T plQU

s<1, 1
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Approximations and simplifications Hydrostatic approximation
> aspectratiod =H/L<1 , W=4§U
» consider first momentum equation
0 10
87: +u-Vu= —%a—i —2Q(w cos ¢ — vsin )
> scaling yields
1 U P
— — o~ Ikl 1
TQ ' [0 ooy T 0 S
> set T = L/U and define Rossby number Ro = U/(LQ)
Ro , R , 0kl 1
°. o polQU
» Ro compares momentum advection with Coriolis force

for large-scale flow in the ocean Ro <1

34/ 39
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>

>

aspectratio 6 = H/L<1 , W=4U
consider first momentum equation

1
% +u-Vu= _pogi —2Q(wcosp — vsinp)

scaling yields

1 U P

TQ 19 T plQU

s<1, 1

set T = L/U and define Rossby number Ro = U/(LQ)

Ro , Ro ikl ;1

poLQU ’
Ro compares momentum advection with Coriolis force
for large-scale flow in the ocean Ro <1

assume dominant geostrophic balance: P/(poLQU) =1
but still keep terms of O(Ro) (but not those of O(4))!

34/ 39
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> geostrophy: exact balance between pressure and Coriolis force

1

0 = ——@—FQsting@
po Ox
1

0 = ——@—2Qusin<p
po Oy
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> geostrophy: exact balance between pressure and Coriolis force

1
0 = ——@—FQsting@
po Ox
1
= ——@—2Qusinap
po Oy

sign of ©?

» thermal wind: combine with hydrostatic balance 0 = —9p/0z — gp

g 0 v .
= = —p+2Q—
0 poaxp+ 9z "%
g 0 ou .
0 = =—p—-20—
p ayp 55 SnY

lateral density gradients are related to vertical shear of u and v
— "dynamical method" to determine ocean currents



Approximations and simplifications Hydrostatic approximation

> aspectration d =H/L<1 — W =4§U

> momentum equation in rotating frame (no friction, no tides)

Du

Popr = —Vp—2pQ2 xu+pVe

» consider third momentum equation

afW-l—u-VW:—i%—|—2ucosqS—%
ot po 0z Po
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> aspectration d =H/L<1 — W =4§U

> momentum equation in rotating frame (no friction, no tides)

Du

Popr = —Vp—2pQ2 xu+pVe

» consider third momentum equation

a—W—|—u-VW:—i%—|—2ucos¢—%
ot po 0z Po

» scaling yields

w uw w2 P
9 ( 9 ) ~ DT QU 9 %
L H poH Po
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> aspectration d =H/L<1 — W =4§U

> momentum equation in rotating frame (no friction, no tides)

Du

Popr = —Vp—2pQ2 xu+pVe

» consider third momentum equation

a—W—|—u-VW:—i%—|—2ucos¢—%
ot po 0z Po

» scaling yields

w uw w2 P
= ( 9 ) ~ DT QU 9 %
T L H poH Po

> use W =46U and T = L/U and scaling for P = poLQU

2 2
BB SUP LU o e
L L H 0
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> aspect ration § = H/L<1 — W =4§U
» consider third momentum equation

10
_ 9 + 2ucos ¢ —

i Vw =
ot tusVw po 0z
> scaling yields
SU? SU? LQU
el L === Q
L 7L H v

Pg

£o

08
Po

37/ 39
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> aspect ration § = H/L<1 — W =4§U

» consider third momentum equation

%‘/:+U'VW:—;)ZZ)+2UCOS¢— Z—f
> scaling yields
2 2
> now multiply with § and divide by QU
d0g

52 U2 9 52U 5
0“Ro 76Ro~1,6,pOQU~

LQU QU

all magnitudes are now relative to vertical pressure force

1
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> aspect ration § = H/L<1 — W =4§U

» consider third momentum equation

%‘/:+U'VW:—;)ZZ)+2UCOS¢— Z—f
> scaling yields
2 2
> now multiply with § and divide by QU
d0g

52 U2 9 52U 5
0“Ro 76Ro~1,6,pOQU~

LQU QU

all magnitudes are now relative to vertical pressure force

> all terms except dp/0z and gravity are O(d) or smaller

1
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> aspect ration § = H/L<1 — W =4§U

» consider third momentum equation

ow 10p g
- : e I _re
ot +u-Vw 0 0 + 2ucos ¢ P
> scaling yields
2 2
S LU o o
L L H 0o
> now multiply with § and divide by QU
02U? 2 U2 2 008
LQUfstO’ LQUi(;RO ~ 1 , pOQUN:l

all magnitudes are now relative to vertical pressure force
> all terms except dp/0z and gravity are O(d) or smaller

> since § < 1 neglect all terms except dp/dz and gravity
— hydrostatic approximation
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Summary hydrostatic approximation

> momentum equation in Boussinesq

D
poﬁltl — _Vp—2p0Q X U — pV D

with geopotential (® = gz) and tidal potential ®44e(x, t)

> becomes
D
poﬁ: = *%+2po§2vsin¢
D
poD—\; = 72—572p0§2usm¢
op
0 = —&— -

acceleration, advection, etc in 3. momentum equation neglected
» f =2Qsin ¢ is the Coriolis parameter

> other equations are unchanged — primitive equations
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Planetary geostrophic approximation

» momentum equation in Boussinesq

D
poﬁltl =—-Vp—2p0Q2 x u—pVo

with geopotential (® = gz) and tidal potential ®44e(x, t)

» becomes for Rossby number Ro < 1

0 = f@+2ponsin¢
ox

0 = f@prOQusind)
dy
op

0 = —5o—gp

acceleration, advection, etc in all momentum equations neglected
» f =2Qsin ¢ is the Coriolis parameter

> other equations are unchanged
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