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Lecture # 2

Approximations and simplifications
Boussinesq approximation
Hydrostatic approximation
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I Continuity equation or conservation of mass

∂ρ

∂t
= −∇ · (ρu)

I introduce scaled variables with primes

ρ = ρ0ρ , u = Uu′ , x = Lx ′ , t = Tt ′

with the dimensionless functions ρ′, u′, etc of O(1)

with constants ρ0, U taking dimensions and magnitudes

and with ∂/∂t = (1/T )∂/∂t ′, and ∂/∂x = (1/L)∂/∂x ′, etc

I this yields

ρ0

T

∂ρ′

∂t ′
= −ρ0U

L
∇′ · (ρ′u′)

∂ρ′

∂t ′
= −UT

L
∇′ · (ρ′u′)

I now forget all primes

∂ρ

∂t
= −UT

L
∇ · (ρu)



Approximations and simplifications Boussinesq approximation 3/ 16

I equation of state for seawater

ρ = ρ(S ,T , p)

function of salinity S , temperature T and pressure p

I no analytical (exact) expressions for the function ρ(S ,T , p)

I empirical expressions with relative accuracy of (3− 5)× 10−6

→ TEOS: http://www.teos-10.org/

ρ(S ,T , p = 0Pa) ρ(S ,T , p = 1000dbar = 107 Pa)
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I Continuity equation or conservation of mass

∂ρ

∂t
= −∇ · (ρu)

I better scaling than ρ = ρ0ρ
′ is given by ρ = ρ0 + %ρ′

with a large mean value ρ0 = 1000 kg/m3

plus small variations with magnitude % = 10 kg/m3

I this yields in the continuity equation

1

T

∂

∂t ′
(ρ0 + %ρ′) = −U

L
∇′ · ((ρ0 + %ρ′)u′)

∂ρ′

∂t ′
= −ρ0

%

UT

L
∇′ · u′ − UT

L
∇′ · (ρ′u′)

I since ρ0/%� 1 and rest of O(1) (as long as UT/L ≥ O(1) )

it follows that

∂ρ

∂t
= −∇ · (ρu) → ∇ · u ≈ 0 : Boussinesq approximation

mass conservation is replaced by volume conservation
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I momentum equation (without friction and tides)

ρ
Du
Dt

= −∇p − 2ρΩ× u − ρ∇Φ

I using ρ = ρ0 + %ρ′ yields

(ρ0 + %ρ′)
Du
Dt

= −∇p − 2(ρ0 + %ρ′)Ω× u − (ρ0 + %ρ′)∇φ

I consider 3. component for u = 0 and φ = gz

∂p

∂z
= −(ρ0 + %ρ′)g ≈ −ρ0g

I motivates to set p ≡ p0(z) + p′ with p0 � p′ and to set

∂p0

∂z
≡ −ρ0g

hydrostatic balance of p0 with constant density ρ0

I momentum equation becomes

(ρ0 + %ρ′)
Du
Dt

= −∇(p0(z) + p′)− 2(ρ0 + %ρ′)Ω× u − (ρ0 + %ρ′)∇φ
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I consider a column of the ocean

M

A(p+  p)δ

δ Ap

δ z

(z)ρ

δ
I pressure force at bottom

FB = pδA

I pressure force at top

FT = −(p + δp)δA ≈ −(p +
∂p

∂z
δz)δA

(positive upward)

I mass of cylinder is M = ρδAδz and gravity force is Fg = −gM
I if no other forces act and column does not accelerate

FB + FT + Fg = 0 → pδA− (p +
∂p

∂z
δz)δA− gρδAδz = 0

or

−∂p
∂z
− gρ = 0 → hydrostatic balance
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I momentum equation becomes

(ρ0 + %ρ′)
Du
Dt

= −∇(p0(z) + p′)− 2(ρ0 + %ρ′)Ω× u − (ρ0 + %ρ′)∇φ

I since by construction

−∂p0

∂z
− gρ0 = 0 or −∇p0(z)− ρ0∇φ = 0

background gravity and vertical pressure gradient completely drop

I since ρ0 � % momentum equation further simplifies to

ρ0
Du
Dt

≈ −∇p′ − 2ρ0Ω× u − %ρ′∇φ

finally set p′ → p and %ρ′ → ρ

but remember that pressure p and density ρ are now perturbations

I salinity equation with ρ = ρ0 + %ρ′ becomes

(ρ0 + %ρ′)
DS

Dt
= −∇ · JS → ρ0

DS

Dt
≈ −∇ · JS

and similar for temperature
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Conservation laws in Boussinesq approximation

I momentum equation

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ∇ ·Σ − ρ∇(Φ + Φtide)

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I continuity equation

0 = ∇ · u

I salt conservation equation

ρ0
DS

Dt
= −∇ · JS

I conservative temperature equation

ρ0
DΘ

Dt
= −∇ · JΘ + very small source term

I equation of state with conservative temperature as state variable

ρ = ρ(S ,Θ, p0)
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I scale continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 → U

L

(
∂u′

∂x ′
+
∂v ′

∂y ′

)
+

W

H

∂w ′

∂z ′
= 0

with lateral scale L and vertical scale H

and lateral velocity scale U and vertical velocity scale W

I for W /H � U/L it follows that ∂w/∂z = 0

such that w = 0 considering bottom or top boundaries

→ scaling becomes inconsistent

I only cases W /H ∼ U/L or W /H � U/L are possible

I now define aspect ratio δ = H/L (”deepness” of the flow) with

W = UH/L = δU

which means that for δ ∼ 1 → W ∼ U and for δ � 1 → W � U

I since δ � 1 for large-scale flow in the ocean W � U

i.e. shallow water yields small (but still important!) w
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I aspect ratio δ = H/L� 1 , W = δU

I momentum equation in rotating frame (no friction, no tides)

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ρ∇φ

I consider first momentum equation

∂u

∂t
+ u ·∇u = − 1

ρ0

∂p

∂x
− 2Ω(w cosϕ− v sinϕ)

I scaling of each term yields

U

T
,

(
U2

L
,
WU

H

)
∼ P

ρ0L
, ΩW , ΩU

divide by ΩU to get magnitudes relative to (vertical) Coriolis force

1

TΩ
,

U

LΩ
∼ P

ρ0LΩU
, δ � 1 , 1
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I aspect ratio δ = H/L� 1 , W = δU

I consider first momentum equation

∂u

∂t
+ u ·∇u = − 1

ρ0

∂p

∂x
− 2Ω(w cosϕ− v sinϕ)

I scaling yields

1

TΩ
,

U

LΩ
∼ P

ρ0LΩU
, δ � 1 , 1

I set T = L/U and define Rossby number Ro = U/(LΩ)

Ro , Ro ∼ P

ρ0LΩU
, δ � 1 , 1

I Ro compares momentum advection with Coriolis force

for large-scale flow in the ocean Ro ≤ 1

I assume dominant geostrophic balance: P/(ρ0LΩU) = 1

but still keep terms of O(Ro) (but not those of O(δ))!
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I geostrophy: exact balance between pressure and Coriolis force

0 = − 1

ρ0

∂p

∂x
+ 2Ωv sinϕ

0 = − 1

ρ0

∂p

∂y
− 2Ωu sinϕ

sign of ϕ?

I thermal wind: combine with hydrostatic balance 0 = −∂p/∂z − gρ

0 =
g

ρ0

∂

∂x
ρ+ 2Ω

∂v

∂z
sinϕ

0 =
g

ρ0

∂

∂y
ρ− 2Ω

∂u

∂z
sinϕ

lateral density gradients are related to vertical shear of u and v

→ ”dynamical method” to determine ocean currents
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I aspect ration δ = H/L� 1 → W = δU

I momentum equation in rotating frame (no friction, no tides)

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u + ρ∇φ

I consider third momentum equation

∂w

∂t
+ u ·∇w = − 1

ρ0

∂p

∂z
+ 2u cosφ− ρg

ρ0

I scaling yields

W

T
,

(
UW

L
,
W 2

H

)
∼ P

ρ0H
, ΩU ,

%g

ρ0

I use W = δU and T = L/U and scaling for P = ρ0LΩU

δU2

L
,
δU2

L
∼ LΩU

H
, ΩU ,

%g

ρ0
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I aspect ration δ = H/L� 1 → W = δU

I consider third momentum equation

∂w

∂t
+ u ·∇w = − 1

ρ0

∂p

∂z
+ 2u cosφ− ρg

ρ0

I scaling yields

δU2

L
,
δU2

L
∼ LΩU

H
, ΩU ,

%g

ρ0

I now multiply with δ and divide by ΩU

δ2U2

LΩU
= δ2Ro ,

δ2U2

LΩU
= δ2Ro ∼ 1 , δ ,

δ%g

ρ0ΩU
∼ 1

all magnitudes are now relative to vertical pressure force

I all terms except ∂p/∂z and gravity are O(δ) or smaller

I since δ � 1 neglect all terms except ∂p/∂z and gravity

→ hydrostatic approximation
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Summary hydrostatic approximation

I momentum equation in Boussinesq

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u − ρ∇Φ

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I becomes

ρ0
Du

Dt
= −∂p

∂x
+ 2ρ0Ωv sinφ

ρ0
Dv

Dt
= −∂p

∂y
− 2ρ0Ωu sinφ

0 = −∂p
∂z
− gρ

acceleration, advection, etc in 3. momentum equation neglected

I f = 2Ω sinφ is the Coriolis parameter

I other equations are unchanged → primitive equations
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Planetary geostrophic approximation

I momentum equation in Boussinesq

ρ0
Du
Dt

= −∇p − 2ρ0Ω× u − ρ∇Φ

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I becomes for Rossby number Ro � 1

0 = −∂p
∂x

+ 2ρ0Ωv sinφ

0 = −∂p
∂y
− 2ρ0Ωu sinφ

0 = −∂p
∂z
− gρ

acceleration, advection, etc in all momentum equations neglected

I f = 2Ω sinφ is the Coriolis parameter

I other equations are unchanged
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