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Lecture # 2

Approximations and simplifications
Boussinesq approximation
Hydrostatic approximation
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» Continuity equation or conservation of mass

dp
ot —V - (pu)

» introduce scaled variables with primes
p=pp , u=Ud |, x=1ILx", t=T¢

with the dimensionless functions p’, u’, etc of O(1)
with constants pg, U taking dimensions and magnitudes

and with 9/0t = (1/T)0/0t’, and 0/0x = (1/L)0/0x’, etc

> this yields
P Uy
Tor — o v )
dp’ _ ur o, I
o0 — v W)
» now forget all primes
dp urt
= 5V (ou)

ot L
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> equation of state for seawater

p=p(ST,p)
function of salinity S, temperature T and pressure p
> no analytical (exact) expressions for the function p(S, T, p)

> empirical expressions with relative accuracy of (3 —5) x 107°
— TEOS: http://www.teos-10.org/
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» Continuity equation or conservation of mass

dp
a9t —V - (pu)

> better scaling than p = pgp’ is given by p = pg + 0p’
with a large mean value py = 1000 kg /m3

plus small variations with magnitude o = 10kg/m?

» this yields in the continuity equation

10 / - U / AN
7%(,004—90) = -7V - ((po + 0p" )
8_p/ o £0 ur ’ ur

- /I = / X / ./
o~ oL VYTV )
> since po/o > 1 and rest of O(1) (as long as UT/L > O(1) )
it follows that

0 . .
6?_/1: =—-V:(pu) - V-u~0 : Boussinesq approximation

mass conservation is replaced by volume conservation
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> momentum equation (without friction and tides)

Du
— = —-Vp—2pQ — VO
P Dy p—2pR X u—p

> using p = pg + op’ yields
Du
(po+ 00") 5o = =Vp = 2(po + 00" x u = (po + 00) V¢

» consider 3. component for u =0 and ¢ = gz

ap /
ol —(po + 0p")g =~ —pog

> motivates to set p = po(z) + p’ with pg > p’ and to set

O _ o
9z Po

hydrostatic balance of pg with constant density pg

» momentum equation becomes

Du
(po+0p") 5= = =V (po(2) + P') = 2(po + 00" )2 x 4 = (po + 00" ) V)
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» consider a column of the ocean

/m > pressure force at bottom
p/

FB = p(SA

M 82 » pressure force at top
p(2)
dp
Fr=—(p+0p)dA~ —(p+ 5-02)0A

T psA
D (positive upward)

» mass of cylinder is M = pdAdz and gravity force is F, = —gM

» if no other forces act and column does not accelerate

Fe+Fr+F;=0 — pdA—(p+ ?52)5A—g,05/\62 =0
z

or

0
_8_” —gp =0 — hydrostatic balance
V4
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» momentum equation becomes

Du
(po+0p") 5= = =V (po(2) + P') = 2(po + 0p")2 x u = (po + 00" ) V)

» since by construction

0
—g —gpo=0 or —Vpy(z) —poVe=0

background gravity and vertical pressure gradient completely drop
> since pg > 0 momentum equation further simplifies to

Du
Po Dt
finally set p’ — p and pp’ — p

~ —Vp =200 xu—0p'Ve

but remember that pressure p and density p are now perturbations

» salinity equation with p = pg + p’ becomes

DS DS
top) = =-V-Js = po—n-V-J
(po +00') 5 s o s
and similar for temperature
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Conservation laws in Boussinesq approximation

» momentum equation

Du
pOFt =—-Vp—2p02xu+V-Z —pV(P+ Dyige)

with geopotential (¢ = gz) and tidal potential ®i4e(x, t)
> continuity equation

0=V -u

> salt conservation equation

DS
POE =-V.-Js

> conservative temperature equation

DO
po?t = —V - Jo + very small source term

» equation of state with conservative temperature as state variable

p = p(S,0,po)
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> scale continuity equation
8u+8v+8W_0 . U (‘9u’+8v’ N Wé?w’_O
ox 0Oy 0z L \ox" 0y H 0z
with lateral scale L and vertical scale H
and lateral velocity scale U and vertical velocity scale W
» for W/H > U/L it follows that Ow/0z =0
such that w = 0 considering bottom or top boundaries
— scaling becomes inconsistent
» only cases W/H ~ U/L or W/H < U/L are possible
> now define aspect ratio 6 = H/L (" deepness” of the flow) with
W= UH/L=45U
which means that for6 ~1 - W~ Uandforo <1 —» WU
> since 0 < 1 for large-scale flow in the ocean W <« U
i.e. shallow water yields small (but still important!) w
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> aspectratio d = H/L<1 , W=40U
> momentum equation in rotating frame (no friction, no tides)
Du
pop, = ~VP— 2000 xu+pVo
» consider first momentum equation
ou 1 0p
— 4+ u-Vu=————2Q(wcosy — vsin
57 T P ( © )
» scaling of each term yields

U u: wu P
et e L 01 A )
T ) < 1 ) H ) pOL ) ) U

divide by QU to get magnitudes relative to (vertical) Coriolis force

1 U P

k1 1

TQ ° LQ  polQU !
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> aspectratiod =H/L<1 , W=4§U
» consider first momentum equation

1
% tu-Vu= _%% — 2Q(w cosp — vsinp)

» scaling yields

1 U

TQ ' LQ T plQU

‘K1, 1

» set T = L/U and define Rossby number Ro = U/(L{2)

Ro , Ro ~ s<1, 1

poLQU ’

» Ro compares momentum advection with Coriolis force

for large-scale flow in the ocean Ro <1

> assume dominant geostrophic balance: P/(poLQ2U) =1
but still keep terms of O(Ro) (but not those of O(J))!
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> geostrophy: exact balance between pressure and Coriolis force

A

Y 1
0 = ——@+2sting0
@ po Ox
1
0 = ——@—QQusingp
po Oy

sign of 7

> thermal wind: combine with hydrostatic balance 0 = —0p/0z — gp

g 0 ov .
= =— 20—
0 Po 8X'0+ 0z S
g 0 ou .
= =—p—-20—
0 p (9yp 57 sin

lateral density gradients are related to vertical shear of u and v

— "dynamical method"” to determine ocean currents
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> aspect ration = H/L<1 — W =46U

> momentum equation in rotating frame (no friction, no tides)

Du

pop, = “VP— 2000 xu+pVo

» consider third momentum equation

0 10
—W+u Vw————p+2ucos¢—%
ot po 0z Po

> scaling yields

2
Wy Py
L H poH Po

T

» use W =46U and T = L/U and scaling for P = poLQU

SU2  SUP LQU 0g
’ ~ ’ Q U s
[ L H Py
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> aspect ration = H/L<1 — W =46U

» consider third momentum equation

0 1 Op
—W+u VW————+2ucosgb—pg

ot po 0z Po

» scaling yields

SU2  SU2 LQU 0g
L 0 L H PR

» now multiply with ¢ and divide by QU

5 dog

522 522
= 5°R —5°Ro ~ 1
(o) (0] " QU

— ~ 1
LQU T LQU ’
all magnitudes are now relative to vertical pressure force

> all terms except Op/0z and gravity are O(6) or smaller

> since § < 1 neglect all terms except Op/0z and gravity
— hydrostatic approximation
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Summary hydrostatic approximation

» momentum equation in Boussinesq

D
pOF'; =—-Vp—2p02xu—pVed

with geopotential (® = gz) and tidal potential ®j4e(x, t)

> becomes
D 0
poﬁz = —8—£—i—2poﬂvsin¢
D 0
poﬁ\; = —8—5 — 2pofusin ¢
op
0 = ———
97 gp

acceleration, advection, etc in 3. momentum equation neglected
» f = 2Qsin ¢ is the Coriolis parameter

» other equations are unchanged — primitive equations
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Planetary geostrophic approximation
» momentum equation in Boussinesq

D
pOFLtI =—Vp—2pR2 xu—pVP

with geopotential (¢ = gz) and tidal potential ®i4e(x, t)

> becomes for Rossby number Ro < 1

0 = —@—l—2p0§2vsingb
Ox

0 = —@—2p0§2usin¢
dy
dp

0 = —L—g

acceleration, advection, etc in all momentum equations neglected
> f = 2Qsin ¢ is the Coriolis parameter

> other equations are unchanged



	Approximations and simplifications
	Boussinesq approximation
	Hydrostatic approximation


