Lecture # 2

Approximations and simplifications Boussinesq approximation Hydrostatic approximation

Approximations and simplifications

Boussinesq approximation

Continuity equation or conservation of mass

$$\frac{\partial \rho}{\partial t} = -\boldsymbol{\nabla} \cdot (\rho \boldsymbol{u})$$

introduce scaled variables with primes

$$\rho = \rho_0 \rho$$
 , $\boldsymbol{u} = U \boldsymbol{u}'$, $\boldsymbol{x} = L \boldsymbol{x}'$, $t = T t'$

with the dimensionless functions ρ' , \boldsymbol{u}' , etc of O(1)with constants ρ_0 , U taking dimensions and magnitudes and with $\partial/\partial t = (1/T)\partial/\partial t'$, and $\partial/\partial x = (1/L)\partial/\partial x'$, etc

this yields

$$\frac{\rho_0}{T} \frac{\partial \rho'}{\partial t'} = -\frac{\rho_0 U}{L} \nabla' \cdot (\rho' \boldsymbol{u}')$$
$$\frac{\partial \rho'}{\partial t'} = -\frac{UT}{L} \nabla' \cdot (\rho' \boldsymbol{u}')$$

now forget all primes

$$\frac{\partial \rho}{\partial t} = -\frac{UT}{L} \boldsymbol{\nabla} \cdot (\rho \boldsymbol{u})$$

equation of state for seawater

$$\rho = \rho(S, T, p)$$

function of salinity S, temperature T and pressure p

- no analytical (exact) expressions for the function $\rho(S, T, p)$
- empirical expressions with relative accuracy of $(3 5) \times 10^{-6}$ \rightarrow TEOS: http://www.teos-10.org/

Approximations and simplifications

Boussinesq approximation

Continuity equation or conservation of mass

$$rac{\partial
ho}{\partial t} = - oldsymbol{
abla} \cdot (
ho oldsymbol{u})$$

- better scaling than $\rho = \rho_0 \rho'$ is given by $\rho = \rho_0 + \rho \rho'$ with a large mean value $\rho_0 = 1000 \text{ kg/m}^3$ plus small variations with magnitude $\rho = 10 \text{ kg/m}^3$
- this yields in the continuity equation

$$\frac{1}{T}\frac{\partial}{\partial t'}(\rho_0 + \varrho \rho') = -\frac{U}{L}\boldsymbol{\nabla}' \cdot ((\rho_0 + \varrho \rho')\boldsymbol{u}')$$
$$\frac{\partial \rho'}{\partial t'} = -\frac{\rho_0}{\varrho}\frac{UT}{L}\boldsymbol{\nabla}' \cdot \boldsymbol{u}' - \frac{UT}{L}\boldsymbol{\nabla}' \cdot (\rho'\boldsymbol{u}')$$

• since $ho_0/arrho \gg 1$ and rest of O(1) (as long as $UT/L \ge O(1)$) it follows that

$$\frac{\partial
ho}{\partial t} = - \boldsymbol{\nabla} \cdot (
ho \boldsymbol{u}) \rightarrow \boldsymbol{\nabla} \cdot \boldsymbol{u} \approx 0$$
 : Boussinesq approximation

mass conservation is replaced by volume conservation

3/ 16

momentum equation (without friction and tides)

$$\rho \frac{D\boldsymbol{u}}{Dt} = -\boldsymbol{\nabla}\rho - 2\rho\boldsymbol{\Omega} \times \boldsymbol{u} - \rho\boldsymbol{\nabla}\boldsymbol{\Phi}$$

• using $\rho = \rho_0 + \varrho \rho'$ yields

$$(\rho_0 + \varrho \rho') \frac{D \boldsymbol{u}}{D t} = -\boldsymbol{\nabla} \boldsymbol{p} - 2(\rho_0 + \varrho \rho') \boldsymbol{\Omega} \times \boldsymbol{u} - (\rho_0 + \varrho \rho') \boldsymbol{\nabla} \phi$$

• consider 3. component for $\boldsymbol{u} = 0$ and $\phi = gz$

$$rac{\partial oldsymbol{
ho}}{\partial z} = -(
ho_0 + arrho
ho') oldsymbol{g} pprox -
ho_0 oldsymbol{g}$$

• motivates to set $p \equiv p_0(z) + p'$ with $p_0 \gg p'$ and to set

$$\frac{\partial p_0}{\partial z} \equiv -\rho_0 g$$

hydrostatic balance of p_0 with constant density ρ_0

momentum equation becomes

$$(\rho_0 + \varrho \rho') \frac{D \boldsymbol{u}}{D t} = -\boldsymbol{\nabla}(\rho_0(z) + \rho') - 2(\rho_0 + \varrho \rho') \boldsymbol{\Omega} \times \boldsymbol{u} - (\rho_0 + \varrho \rho') \boldsymbol{\nabla}\phi$$

Approximations and simplifications

Boussinesq approximation

consider a column of the ocean

pressure force at bottom
F_B = p \delta A
pressure force at top
F_T = -(p + \delta p) \delta A \approx -(p + \frac{\partial p}{\partial z} \delta z) \delta A
(positive upward)

- mass of cylinder is $M = \rho \delta A \delta z$ and gravity force is $F_g = -gM$
- if no other forces act and column does not accelerate

$$F_B + F_T + F_g = 0 \rightarrow p\delta A - (p + \frac{\partial p}{\partial z}\delta z)\delta A - g\rho\delta A\delta z = 0$$

or

$$-rac{\partial m{
ho}}{\partial z} - m{g}
ho = m{0} \
ightarrow$$
 hydrostatic balance

momentum equation becomes

$$(\rho_0 + \varrho \rho') \frac{D \boldsymbol{u}}{D t} = -\boldsymbol{\nabla}(\boldsymbol{p}_0(\boldsymbol{z}) + \boldsymbol{p}') - 2(\rho_0 + \varrho \rho') \boldsymbol{\Omega} \times \boldsymbol{u} - (\rho_0 + \varrho \rho') \boldsymbol{\nabla} \phi$$

since by construction

$$-rac{\partial p_0}{\partial z} - g
ho_0 = 0$$
 or $-
abla p_0(z) -
ho_0
abla \phi = 0$

background gravity and vertical pressure gradient completely drop

• since $\rho_0 \gg \rho$ momentum equation further simplifies to

$$\rho_0 \frac{D \boldsymbol{u}}{D t} \approx -\boldsymbol{\nabla} \boldsymbol{p}' - 2\rho_0 \boldsymbol{\Omega} \times \boldsymbol{u} - \varrho \rho' \boldsymbol{\nabla} \phi$$

finally set ${\it p}' \rightarrow {\it p}$ and $\varrho \rho' \rightarrow \rho$

but remember that pressure p and density ρ are now *perturbations*

▶ salinity equation with $\rho = \rho_0 + \rho \rho'$ becomes

$$(\rho_0 + \varrho \rho') \frac{DS}{Dt} = - \boldsymbol{\nabla} \cdot \boldsymbol{J}_S \quad \rightarrow \quad \rho_0 \frac{DS}{Dt} \approx - \boldsymbol{\nabla} \cdot \boldsymbol{J}_S$$

and similar for temperature

Approximations and simplifications

 ${\sf Boussinesq\ approximation}$

Conservation laws in Boussinesq approximation

momentum equation

$$\rho_0 \frac{D\boldsymbol{u}}{Dt} = -\boldsymbol{\nabla} \boldsymbol{p} - 2\rho_0 \boldsymbol{\Omega} \times \boldsymbol{u} + \boldsymbol{\nabla} \cdot \boldsymbol{\Sigma} - \rho \boldsymbol{\nabla} (\boldsymbol{\Phi} + \boldsymbol{\Phi}_{tide})$$

with geopotential ($\Phi = gz$) and tidal potential $\Phi_{tide}(\mathbf{x}, t)$

continuity equation

$$\mathbf{0} = \mathbf{\nabla} \cdot \mathbf{u}$$

salt conservation equation

$$\rho_0 \frac{DS}{Dt} = -\boldsymbol{\nabla} \cdot \boldsymbol{J}_S$$

conservative temperature equation

$$\rho_0 \frac{D\Theta}{Dt} = -\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\Theta} + \text{very small source term}$$

equation of state with conservative temperature as state variable

$$\rho = \rho(S, \Theta, p_0)$$

scale continuity equation

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \quad \rightarrow \quad \frac{U}{L} \left(\frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} \right) + \frac{W}{H} \frac{\partial w'}{\partial z'} = 0$$

with lateral scale L and vertical scale Hand lateral velocity scale U and vertical velocity scale W

- for W/H ≫ U/L it follows that ∂w/∂z = 0
 such that w = 0 considering bottom or top boundaries
 → scaling becomes inconsistent
- only cases $W/H \sim U/L$ or $W/H \ll U/L$ are possible
- now define aspect ratio $\delta = H/L$ ("deepness" of the flow) with

$$W = UH/L = \delta U$$

which means that for $\delta \sim 1 \ o \ W \sim U$ and for $\delta \ll 1 \ o \ W \ll U$

▶ since $\delta \ll 1$ for large-scale flow in the ocean $W \ll U$ i.e. shallow water yields small (but still important!) w

Approximations and simplifications

Hydrostatic approximation

- aspect ratio $\delta = H/L \ll 1$, $W = \delta U$
- momentum equation in rotating frame (no friction, no tides)

$$\rho_0 \frac{D \boldsymbol{u}}{D t} = -\boldsymbol{\nabla} \boldsymbol{p} - 2\rho_0 \boldsymbol{\Omega} \times \boldsymbol{u} + \rho \boldsymbol{\nabla} \phi$$

consider first momentum equation

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\frac{1}{\rho_0} \frac{\partial \boldsymbol{p}}{\partial x} - 2\Omega(\boldsymbol{w} \cos \varphi - \boldsymbol{v} \sin \varphi)$$

scaling of each term yields

$$rac{U}{T}$$
 , $\left(rac{U^2}{L} \ , \ rac{WU}{H}
ight)$ \sim $rac{P}{
ho_0 L}$, ΩW , ΩU

divide by ΩU to get magnitudes relative to (vertical) Coriolis force

$$rac{1}{T\Omega}$$
 , $rac{U}{L\Omega}$ \sim $rac{P}{
ho_0 L\Omega U}$, $\delta \ll 1$, 1

 $10/\ 16$

- aspect ratio $\delta = H/L \ll 1$, $W = \delta U$
- consider first momentum equation

$$\frac{\partial u}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\frac{1}{\rho_0} \frac{\partial \boldsymbol{p}}{\partial x} - 2\Omega(\boldsymbol{w} \cos \varphi - \boldsymbol{v} \sin \varphi)$$

scaling yields

$$rac{1}{T\Omega}$$
 , $rac{U}{L\Omega}$ \sim $rac{P}{
ho_0 L\Omega U}$, $\delta \ll 1$, 1

• set T = L/U and define Rossby number $Ro = U/(L\Omega)$

Ro , Ro
$$\sim ~~ {P \over
ho_0 L \Omega U}$$
 , $\delta \ll 1$, 1

- Ro compares momentum advection with Coriolis force for large-scale flow in the ocean Ro < 1
- assume dominant geostrophic balance: P/(ρ₀LΩU) = 1 but still keep terms of O(Ro) (but not those of O(δ))!

Approximations and simplifications Hydrostatic approximation

geostrophy: exact balance between pressure and Coriolis force

• thermal wind: combine with hydrostatic balance $0 = -\partial p/\partial z - g\rho$

$$0 = \frac{g}{\rho_0} \frac{\partial}{\partial x} \rho + 2\Omega \frac{\partial v}{\partial z} \sin \varphi$$
$$0 = \frac{g}{\rho_0} \frac{\partial}{\partial y} \rho - 2\Omega \frac{\partial u}{\partial z} \sin \varphi$$

lateral density gradients are related to vertical shear of u and $v \rightarrow$ "dynamical method" to determine ocean currents

 $12/\ 16$

- aspect ration $\delta = H/L \ll 1 \rightarrow W = \delta U$
- momentum equation in rotating frame (no friction, no tides)

$$\rho_0 \frac{D \boldsymbol{u}}{D t} = -\boldsymbol{\nabla} \boldsymbol{p} - 2\rho_0 \boldsymbol{\Omega} \times \boldsymbol{u} + \rho \boldsymbol{\nabla} \phi$$

consider third momentum equation

$$\frac{\partial w}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} w = -\frac{1}{\rho_0} \frac{\partial p}{\partial z} + 2u \cos \phi - \frac{\rho g}{\rho_0}$$

scaling yields

$$\frac{W}{T}$$
, $\left(\frac{UW}{L}$, $\frac{W^2}{H}\right)$ ~ $\frac{P}{\rho_0 H}$, ΩU , $\frac{\varrho g}{\rho_0}$

• use
$$W = \delta U$$
 and $T = L/U$ and scaling for $P = \rho_0 L \Omega U$

$$\frac{\delta U^2}{L}$$
 , $\frac{\delta U^2}{L}$ ~ $\frac{L\Omega U}{H}$, ΩU , $\frac{\varrho g}{\rho_0}$

Approximations and simplifications

Hydrostatic approximation

- ▶ aspect ration $\delta = H/L \ll 1 \rightarrow W = \delta U$
- consider third momentum equation

$$\frac{\partial w}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} w = -\frac{1}{\rho_0} \frac{\partial p}{\partial z} + 2u \cos \phi - \frac{\rho g}{\rho_0}$$

scaling yields

$$rac{\delta U^2}{L}$$
 , $rac{\delta U^2}{L}$ ~ $rac{L\Omega U}{H}$, ΩU , $rac{\varrho g}{
ho_0}$

• now multiply with δ and divide by ΩU

$$\frac{\delta^2 U^2}{L\Omega U} = \delta^2 R o \quad , \quad \frac{\delta^2 U^2}{L\Omega U} = \delta^2 R o \quad \sim \quad 1 \quad , \quad \delta \quad , \quad \frac{\delta \varrho g}{\rho_0 \Omega U} \sim 1$$

all magnitudes are now relative to vertical pressure force

- all terms except $\partial p/\partial z$ and gravity are $O(\delta)$ or smaller
- ▶ since $\delta \ll 1$ neglect all terms except $\partial p / \partial z$ and gravity → hydrostatic approximation

 $14/\ 16$

Summary hydrostatic approximation

momentum equation in Boussinesq

$$\rho_0 \frac{D\boldsymbol{u}}{Dt} = -\boldsymbol{\nabla}\boldsymbol{p} - 2\rho_0 \boldsymbol{\Omega} \times \boldsymbol{u} - \rho \boldsymbol{\nabla}\boldsymbol{\Phi}$$

with geopotential ($\Phi = gz$) and tidal potential $\Phi_{tide}(\mathbf{x}, t)$

becomes

$$\rho_{0} \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + 2\rho_{0}\Omega v \sin \phi$$
$$\rho_{0} \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} - 2\rho_{0}\Omega u \sin \phi$$
$$0 = -\frac{\partial p}{\partial z} - g\rho$$

acceleration, advection, etc in 3. momentum equation neglected

- $f = 2\Omega \sin \phi$ is the Coriolis parameter
- \blacktriangleright other equations are unchanged \rightarrow primitive equations

Approximations and simplifications

Hydrostatic approximation

Planetary geostrophic approximation

momentum equation in Boussinesq

$$\rho_0 \frac{D\boldsymbol{u}}{Dt} = -\boldsymbol{\nabla}\boldsymbol{p} - 2\rho_0 \boldsymbol{\Omega} \times \boldsymbol{u} - \rho \boldsymbol{\nabla} \boldsymbol{\Phi}$$

with geopotential ($\Phi = gz$) and tidal potential $\Phi_{tide}(\mathbf{x}, t)$

• becomes for Rossby number $Ro \ll 1$

$$0 = -\frac{\partial p}{\partial x} + 2\rho_0 \Omega v \sin \phi$$
$$0 = -\frac{\partial p}{\partial y} - 2\rho_0 \Omega u \sin \phi$$
$$0 = -\frac{\partial p}{\partial z} - g\rho$$

acceleration, advection, etc in all momentum equations neglected

- $f = 2\Omega \sin \phi$ is the Coriolis parameter
- other equations are unchanged