Dynamische und regionale Ozeanographie WS 2014/15

Carsten Eden und Detlef Quadfasel

Institut für Meereskunde, Universität Hamburg

April 28, 2015

Lecture \# 3

Introduction
Content
Literature

Hydrodynamics
Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation Momentum or Navier Stokes equation
Heat and temperature equation

Introduction
Content Literature

Hydrodynamics

Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

Content dynamical oceanography

1. Introduction
2. Hydrodynamics

Kinematics, continuity, momentum and thermodynamic equation

Content dynamical oceanography

1. Introduction
2. Hydrodynamics

Kinematics, continuity, momentum and thermodynamic equation
3. Approximations and simplifications

Boussinesq, hydrostatic, layered models, quasi-geostrophic approximation, potential vorticity

Content dynamical oceanography

1. Introduction
2. Hydrodynamics

Kinematics, continuity, momentum and thermodynamic equation
3. Approximations and simplifications

Boussinesq, hydrostatic, layered models, quasi-geostrophic approximation, potential vorticity
4. Waves

Gravity waves w/o rotation, Kelvin waves, geostrophic adjustment, Rossby waves, vertical modes, equatorial waves

Content dynamical oceanography

1. Introduction
2. Hydrodynamics

Kinematics, continuity, momentum and thermodynamic equation
3. Approximations and simplifications

Boussinesq, hydrostatic, layered models, quasi-geostrophic approximation, potential vorticity
4. Waves

Gravity waves w/o rotation, Kelvin waves, geostrophic adjustment, Rossby waves, vertical modes, equatorial waves
5. Wind driven circulation

Ekman-layers, -spiral, -transport, -pumping, Sverdrup transport, western boundary currents

Content dynamical oceanography

1. Introduction
2. Hydrodynamics

Kinematics, continuity, momentum and thermodynamic equation
3. Approximations and simplifications

Boussinesq, hydrostatic, layered models, quasi-geostrophic approximation, potential vorticity
4. Waves

Gravity waves w/o rotation, Kelvin waves, geostrophic adjustment, Rossby waves, vertical modes, equatorial waves
5. Wind driven circulation

Ekman-layers, -spiral, -transport, -pumping, Sverdrup transport, western boundary currents
6. Thermohaline circulation
basic ingredients and dynamics, Stommel-Arons model

Inhalt Regionale Ozeanographie

- Fundamentale Eigenschaften des Meerwassers (The international thermodynamic equation of seawater - 2010, TEOS-10) Calculation and use of thermodynamic properties)
- Methoden der Wassermassenanalyse (Temperatur-, Salzgehalts- und DichteGleichung, Zustandsgleichung, Stirring \& Mixing)
- Flüsse an der Grenzfläche Atmosphäre-Ozean (Energiebilanzen Ozean \& Atmosphäre)
- Eigenschaften und Dynamik der ozeanischen Deckschicht, Wassermassenformation (Konvektion, Ekman, Langmuir, Trägheitswellen, Scherungsinstabiliäten)
- Subduktion und Dynamik der Warmwassersphäre (Auftrieb, Geostrophie, Vorticityerhaltung, Sverdrup, Subduktion, Ventilierte Thermokline)
- Westliche Randströme (Stommel, Munk, Ro > 0, Rossby-Wellen, Instabilitäten, Randströme im Äquatorbereich)
- Randmeere des Atlantischen Ozeans
- Reg. Oz. des Indischen Ozeans
- Reg. Oz. des Pazifischen Ozeans
- Reg. Oz. des Südlichen Ozeans
(Hier regionale Besonderheiten
z.B. Monsunzirkulation,

Äquatoriale Zirkulation, El Nino, Form Drag AACC, Schelf-Slope
Konvektion, Overflows)

Literature

- Marshall and Plumb:

Atmosphere, ocean and climate dynamics

Literature

- Marshall and Plumb:

Atmosphere, ocean and climate dynamics

- Cushman-Roisin, Beckers:

Introduction to geophysical fluid dynamics

Literature

- Marshall and Plumb:

Atmosphere, ocean and climate dynamics

- Cushman-Roisin, Beckers:

Introduction to geophysical fluid dynamics

- Talley, Pickard, Emery, Swift:

Descriptive physical oceanography (http://booksite.elsevier.com/DPO)

Literature

- Marshall and Plumb:

Atmosphere, ocean and climate dynamics

- Cushman-Roisin, Beckers:

Introduction to geophysical fluid dynamics

- Talley, Pickard, Emery, Swift:

Descriptive physical oceanography (http://booksite.elsevier.com/DPO)

- (Olbers, Willebrand, Eden: Ocean dynamics)

Introduction
Content
Literature

Hydrodynamics
Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

- any fluid is made of small 'water parcels'

- any fluid is made of small 'water parcels'
- dimensions are small compared to relevant scales of the fluid

- any fluid is made of small 'water parcels'
- dimensions are small compared to relevant scales of the fluid
- small but finite, dimensions are treated as infinitesimally small

- any fluid is made of small 'water parcels'
- dimensions are small compared to relevant scales of the fluid
- small but finite, dimensions are treated as infinitesimally small
- still made of a infinitesimal large number of molecules

- any fluid is made of small 'water parcels'
- dimensions are small compared to relevant scales of the fluid
- small but finite, dimensions are treated as infinitesimally small
- still made of a infinitesimal large number of molecules
- small but constant mass, individual molecules might change

- any fluid is made of small 'water parcels'
- dimensions are small compared to relevant scales of the fluid
- small but finite, dimensions are treated as infinitesimally small
- still made of a infinitesimal large number of molecules
- small but constant mass, individual molecules might change
- velocity \boldsymbol{u} is the parcel velocity, a parcel has properties, e.g. C

- consider property $C(t, x, y, z)$ of a water parcel

$$
\delta C=\frac{\partial C}{\partial t} \delta t+\frac{\partial C}{\partial x} \delta x+\frac{\partial C}{\partial y} \delta y+\frac{\partial C}{\partial z} \delta z
$$

- consider property $C(t, x, y, z)$ of a water parcel

$$
\delta C=\frac{\partial C}{\partial t} \delta t+\frac{\partial C}{\partial x} \delta x+\frac{\partial C}{\partial y} \delta y+\frac{\partial C}{\partial z} \delta z
$$

- choose $\delta x=u \delta t, \delta y=v \delta t$, and $\delta z=w \delta t$
i.e. calculate δC following path of parcel

$$
\delta C=\frac{\partial C}{\partial t} \delta t+\left(\frac{\partial C}{\partial x} u+\frac{\partial C}{\partial y} v+\frac{\partial C}{\partial z} w\right) \delta t
$$

- consider property $C(t, x, y, z)$ of a water parcel

$$
\delta C=\frac{\partial C}{\partial t} \delta t+\frac{\partial C}{\partial x} \delta x+\frac{\partial C}{\partial y} \delta y+\frac{\partial C}{\partial z} \delta z
$$

- choose $\delta x=u \delta t, \delta y=v \delta t$, and $\delta z=w \delta t$
i.e. calculate δC following path of parcel

$$
\delta C=\frac{\partial C}{\partial t} \delta t+\left(\frac{\partial C}{\partial x} u+\frac{\partial C}{\partial y} v+\frac{\partial C}{\partial z} w\right) \delta t \rightarrow \frac{\delta C}{\delta t}=\frac{\partial C}{\partial t}+\boldsymbol{u} \cdot \nabla C
$$

- Euler's relation

$$
\frac{\delta C}{\delta t} \rightarrow\left(\frac{\partial}{\partial t} C\right)_{\text {parcel }}=\frac{\partial}{\partial t} C+\boldsymbol{u} \cdot \nabla C \equiv \frac{D}{D t} C
$$

- $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \boldsymbol{\nabla}$ is often called 'material' or 'substantial' derivative

- Euler's relation

$$
\frac{\delta C}{\delta t} \rightarrow\left(\frac{\partial}{\partial t} C\right)_{\text {parcel }}=\frac{\partial}{\partial t} C+\boldsymbol{u} \cdot \nabla C \equiv \frac{D}{D t} C
$$

- $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \boldsymbol{\nabla}$ is often called 'material' or 'substantial' derivative
- local rate of change plus change implied by advection of fluid

- Euler's relation

$$
\frac{\delta C}{\delta t} \rightarrow\left(\frac{\partial}{\partial t} C\right)_{\text {parcel }}=\frac{\partial}{\partial t} C+\boldsymbol{u} \cdot \nabla C \equiv \frac{D}{D t} C
$$

- $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \boldsymbol{\nabla}$ is often called 'material' or 'substantial' derivative
- local rate of change plus change implied by advection of fluid
- if $D C / D t=0$, property C of parcels does not change, it's conservative (but locally C might change in time)

- Euler's relation

$$
\frac{\delta C}{\delta t} \rightarrow\left(\frac{\partial}{\partial t} C\right)_{\text {parcel }}=\frac{\partial}{\partial t} C+\boldsymbol{u} \cdot \nabla C \equiv \frac{D}{D t} C
$$

- $D / D t=\partial / \partial t+\boldsymbol{u} \cdot \boldsymbol{\nabla}$ is often called 'material' or 'substantial' derivative
- local rate of change plus change implied by advection of fluid
- if $D C / D t=0$, property C of parcels does not change, it's conservative (but locally C might change in time)
- Lagrangian frameworks uses left hand side of $D C / D t$ Eulerian framework uses right hand side of $D C / D t$ both are equivalent but Eulerian framework is often more convenient

Introduction
Content
Literature

Hydrodynamics

Euler/Lagrange framework

General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

- consider volume V, fixed in space and bounded by a surface A
- and a scalar fluid property C concentration (in units of C per kg sea water or ρC in units of C per m^{3})

- consider volume V, fixed in space and bounded by a surface A
- and a scalar fluid property C concentration (in units of C per kg sea water or ρC in units of C per m^{3})
- total amount of the property C in V is given by

$$
\int_{V} \rho C d V
$$

and may change in time by two ways:

- consider volume V, fixed in space and bounded by a surface A
- and a scalar fluid property C concentration (in units of C per kg sea water or ρC in units of C per m^{3})
- total amount of the property C in V is given by

$$
\int_{V} \rho C d V
$$

and may change in time by two ways:

- by a flux across surface A
- by an interior source or sink

- consider volume V, fixed in space and bounded by a surface A
- outward transport across A

$$
\oint_{A}(\rho C \boldsymbol{u}+\boldsymbol{J}) \cdot d \boldsymbol{A}
$$

- by transport by water parcels, an "advective" part ρ Cu
- and by a non-advective flux \boldsymbol{J} which is everything else, e.g diffusion, heat conduction, radiation etc.

- consider volume V, fixed in space and bounded by a surface A
- interior sources/sinks Q (units of C per time and volume), e.g. heat sources, radioactive decay, chemical reaction,

$$
\int_{V} Q d V
$$

- consider volume V, fixed in space and bounded by a surface A
- total rate of change of the C-content in the volume

$$
\frac{\partial}{\partial t} \int_{V} \rho C d V=-\oint_{A}(\rho C \boldsymbol{u}+\boldsymbol{J}) \cdot d \boldsymbol{A}+\int_{V} Q d V
$$

- consider volume V, fixed in space and bounded by a surface A
- total rate of change of the C-content in the volume

$$
\frac{\partial}{\partial t} \int_{V} \rho C d V=-\oint_{A}(\rho C \boldsymbol{u}+\boldsymbol{J}) \cdot d \boldsymbol{A}+\int_{V} Q d V
$$

- the surface integral may be rewritten with Gauss law as

$$
\oint_{A}(\rho C \boldsymbol{u}+\boldsymbol{J}) \cdot d \boldsymbol{A}=\int_{V} \boldsymbol{\nabla} \cdot(\rho C \mathbf{u}+\boldsymbol{J}) d V
$$

- consider volume V, fixed in space and bounded by a surface A
- total rate of change of the C-content in the volume

$$
\frac{\partial}{\partial t} \int_{V} \rho C d V=-\oint_{A}(\rho C \boldsymbol{u}+\boldsymbol{J}) \cdot d \boldsymbol{A}+\int_{V} Q d V
$$

- the surface integral may be rewritten with Gauss law as

$$
\oint_{A}(\rho C \boldsymbol{u}+\boldsymbol{J}) \cdot d \boldsymbol{A}=\int_{V} \boldsymbol{\nabla} \cdot(\rho C \mathbf{u}+\boldsymbol{J}) d V
$$

- for fixed volume $\partial / \partial t$ and integral commute

- consider volume V, fixed in space and bounded by a surface A
- total rate of change of the C-content in the volume

$$
\int_{V}\left[\frac{\partial}{\partial t} \rho C+\nabla \cdot(\rho C u+J)-Q\right] d V=0
$$

- since this holds for arbitrary volume, the integrand has to vanish

$$
\frac{\partial}{\partial t} \rho C+\nabla \cdot(\rho C u+J)-Q=0
$$

which is the general conservation equation in flux form

Introduction
Content
Literature

Hydrodynamics
Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C u+J)+Q
$$

- take $C=1$ ($\mathrm{kg} / \mathrm{kg}$ sea water), $\rightarrow \rho C$ becomes total mass per m^{3}
- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C u+J)+Q
$$

- take $C=1$ ($\mathrm{kg} / \mathrm{kg}$ sea water), $\rightarrow \rho C$ becomes total mass per m^{3}
- total mass has no source $\rightarrow Q=0$ and $\boldsymbol{J}=0$
- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\boldsymbol{\nabla} \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- take $C=1$ ($\mathrm{kg} / \mathrm{kg}$ sea water), $\rightarrow \rho C$ becomes total mass per m^{3}
- total mass has no source $\rightarrow Q=0$ and $\boldsymbol{J}=0$
- mass conservation or continuity equation

$$
\frac{\partial}{\partial t} \rho=-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}
$$

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C u+J)+Q
$$

- take $C=1$ ($\mathrm{kg} / \mathrm{kg}$ sea water), $\rightarrow \rho C$ becomes total mass per m^{3}
- total mass has no source $\rightarrow Q=0$ and $\boldsymbol{J}=0$
- mass conservation or continuity equation

$$
\frac{\partial}{\partial t} \rho=-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}
$$

- possible to rewrite flux form (above) to parcel form

$$
\frac{\partial}{\partial t} \rho+\boldsymbol{u} \cdot \boldsymbol{\nabla} \rho \equiv \frac{D \rho}{D t}=-\rho \boldsymbol{\nabla} \cdot \boldsymbol{u}
$$

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- take $C=1$ ($\mathrm{kg} / \mathrm{kg}$ sea water), $\rightarrow \rho C$ becomes total mass per m^{3}
- total mass has no source $\rightarrow Q=0$ and $J=0$
- mass conservation or continuity equation

$$
\frac{\partial}{\partial t} \rho=-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}
$$

- possible to rewrite flux form (above) to parcel form

$$
\frac{\partial}{\partial t} \rho+\boldsymbol{u} \cdot \boldsymbol{\nabla} \rho \equiv \frac{D \rho}{D t}=-\rho \boldsymbol{\nabla} \cdot \boldsymbol{u}
$$

- with specific volume $v=1 / \rho$ continuity equation becomes

$$
\frac{D \rho}{D t}=\frac{D}{D t} v^{-1}=-\frac{1}{v^{2}} \frac{D v}{D t}=-\frac{1}{v} \nabla \cdot \boldsymbol{u}
$$

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C u+\boldsymbol{J})+Q
$$

- take $C=1$ ($\mathrm{kg} / \mathrm{kg}$ sea water), $\rightarrow \rho C$ becomes total mass per m^{3}
- total mass has no source $\rightarrow Q=0$ and $\boldsymbol{J}=0$
- mass conservation or continuity equation

$$
\frac{\partial}{\partial t} \rho=-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}
$$

- possible to rewrite flux form (above) to parcel form

$$
\frac{\partial}{\partial t} \rho+\boldsymbol{u} \cdot \boldsymbol{\nabla} \rho \equiv \frac{D \rho}{D t}=-\rho \boldsymbol{\nabla} \cdot \boldsymbol{u}
$$

- with specific volume $v=1 / \rho$ continuity equation becomes

$$
\frac{D \rho}{D t}=\frac{D}{D t} v^{-1}=-\frac{1}{v^{2}} \frac{D v}{D t}=-\frac{1}{v} \nabla \cdot \boldsymbol{u} \rightarrow \rho \frac{D v}{D t}=\nabla \cdot \boldsymbol{u}
$$

parcel form of continuity equation

$$
\left(\rho w+\frac{\partial \rho w}{\partial x} \delta z\right) \delta x \delta y
$$

Hydrodynamics
-

- divergence of mass flux F in \times direction

$$
F^{x}\left(x_{0}+\delta x\right)-F^{x}\left(x_{0}\right)=\left(\rho u+\frac{\partial \rho u}{\partial x} \delta x+O\left(\delta x^{2}\right)\right) \delta y \delta z-\rho u \delta y \delta z
$$

- divergence of mass flux F in \times direction

$$
F^{x}\left(x_{0}+\delta x\right)-F^{x}\left(x_{0}\right)=\left(\rho u+\frac{\partial \rho u}{\partial x} \delta x+O\left(\delta x^{2}\right)\right) \delta y \delta z-\rho u \delta y \delta z
$$

- rate of change of mass

$$
\frac{\delta M}{\delta t}=\frac{\partial}{\partial t}(\rho \delta x \delta y \delta z)=\frac{\partial \rho}{\partial t} \delta x \delta y \delta z
$$

- divergence of mass flux F in \times direction

$$
F^{x}\left(x_{0}+\delta x\right)-F^{x}\left(x_{0}\right)=\left(\rho u+\frac{\partial \rho u}{\partial x} \delta x\right) \delta y \delta z-\rho u \delta y \delta z
$$

- rate of change of mass

$$
\frac{\delta M}{\delta t}=\frac{\partial}{\partial t}(\rho \delta x \delta y \delta z)=\frac{\partial \rho}{\partial t} \delta x \delta y \delta z
$$

- divergence of mass flux F in \times direction

$$
F^{x}\left(x_{0}+\delta x\right)-F^{x}\left(x_{0}\right)=\left(\rho u+\frac{\partial \rho u}{\partial x} \delta x\right) \delta y \delta z-\rho u \delta y \delta z
$$

- rate of change of mass

$$
\frac{\delta M}{\delta t}=\frac{\partial}{\partial t}(\rho \delta x \delta y \delta z)=\frac{\partial \rho}{\partial t} \delta x \delta y \delta z
$$

- divergence of mass flux F in y direction

$$
F^{y}\left(y_{0}+\delta y\right)-F^{y}\left(y_{0}\right)=\frac{\partial \rho v}{\partial y} \delta x \delta y \delta z
$$

and similar for z

- divergence of mass flux F in \times direction

$$
F^{x}\left(x_{0}+\delta x\right)-F^{x}\left(x_{0}\right)=\left(\rho u+\frac{\partial \rho u}{\partial x} \delta x\right) \delta y \delta z-\rho u \delta y \delta z
$$

- rate of change of mass

$$
\frac{\delta M}{\delta t}=\frac{\partial}{\partial t}(\rho \delta x \delta y \delta z)=\frac{\partial \rho}{\partial t} \delta x \delta y \delta z
$$

- divergence of mass flux F in y direction

$$
F^{y}\left(y_{0}+\delta y\right)-F^{y}\left(y_{0}\right)=\frac{\partial \rho v}{\partial y} \delta x \delta y \delta z
$$

and similar for z

- mass change is balanced by flux divergences

$$
\begin{aligned}
\frac{\delta M}{\delta t} & =\frac{\partial \rho}{\partial t} \delta x \delta y \delta z=-\left(\frac{\partial}{\partial x} \rho u+\frac{\partial}{\partial y} \rho v+\frac{\partial}{\partial z} \rho w\right) \delta x \delta y \delta z \\
\frac{\partial \rho}{\partial t} & =-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}
\end{aligned}
$$

which is again the flux form of the continuity equation

Introduction
Content
Literature

Hydrodynamics
Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

- seawater is mixture of pure water and various salts

- seawater is mixture of pure water and various salts
- combine all salts into one variable :
s is salt concentration in kg salt $/ \mathrm{kg}$ sea water
- $s=0.035$ is a typical value for the open ocean

- seawater is mixture of pure water and various salts
- combine all salts into one variable :
s is salt concentration in kg salt $/ \mathrm{kg}$ sea water
- $s=0.035$ is a typical value for the open ocean
- salinity is $S=1000 \mathrm{~s}$ such that $s=0.035 \mathrm{~kg}$ salt $/ \mathrm{kg}$ sea water corresponds to $S=35 \mathrm{~g} / \mathrm{kg}$

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- salt conservation equation with $C=S, Q=0$ but $\boldsymbol{J}=\boldsymbol{J}_{S}$

$$
\frac{\partial}{\partial t} \rho S=-\boldsymbol{\nabla} \cdot\left(\rho S \boldsymbol{u}+\boldsymbol{J}_{S}\right)
$$

with salt flux \boldsymbol{J}_{S} by molecular diffusion

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- salt conservation equation with $C=S, Q=0$ but $\boldsymbol{J}=\boldsymbol{J}_{S}$

$$
\frac{\partial}{\partial t} \rho S=-\boldsymbol{\nabla} \cdot\left(\rho S \boldsymbol{u}+\boldsymbol{J}_{S}\right)
$$

with salt flux \boldsymbol{J}_{S} by molecular diffusion

- rewrite to parcel form given by

$$
\rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t}=-\boldsymbol{\nabla} \cdot \rho S \boldsymbol{u}-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}
$$

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- salt conservation equation with $C=S, Q=0$ but $\boldsymbol{J}=\boldsymbol{J}_{S}$

$$
\frac{\partial}{\partial t} \rho S=-\boldsymbol{\nabla} \cdot\left(\rho S \boldsymbol{u}+\boldsymbol{J}_{S}\right)
$$

with salt flux \boldsymbol{J}_{S} by molecular diffusion

- rewrite to parcel form given by

$$
\begin{aligned}
& \rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t}=-\boldsymbol{\nabla} \cdot \rho S \boldsymbol{u}-\nabla \cdot \boldsymbol{J}_{S} \\
& \rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t}=-\rho \boldsymbol{u} \cdot \nabla S-S \nabla \cdot \rho \boldsymbol{u}-\nabla \cdot \boldsymbol{J}_{S}
\end{aligned}
$$

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\boldsymbol{\nabla} \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- salt conservation equation with $C=S, Q=0$ but $\boldsymbol{J}=\boldsymbol{J}_{S}$

$$
\frac{\partial}{\partial t} \rho S=-\boldsymbol{\nabla} \cdot\left(\rho S \boldsymbol{u}+\boldsymbol{J}_{S}\right)
$$

with salt flux \boldsymbol{J}_{S} by molecular diffusion

- rewrite to parcel form given by

$$
\begin{aligned}
\rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t} & =-\boldsymbol{\nabla} \cdot \rho S \boldsymbol{u}-\nabla \cdot \boldsymbol{J}_{S} \\
\rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t} & =-\rho \boldsymbol{u} \cdot \nabla S-S \nabla \cdot \rho \boldsymbol{u}-\nabla \cdot \boldsymbol{J}_{S} \\
\rho \frac{D S}{D t} & =-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}
\end{aligned}
$$

using continuity equation $\partial \rho / \partial t=-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}$ times S

- general conservation law in flux form

$$
\frac{\partial}{\partial t} \rho C=-\boldsymbol{\nabla} \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q
$$

- salt conservation equation with $C=S, Q=0$ but $\boldsymbol{J}=\boldsymbol{J}_{S}$

$$
\frac{\partial}{\partial t} \rho S=-\boldsymbol{\nabla} \cdot\left(\rho S \boldsymbol{u}+\boldsymbol{J}_{S}\right)
$$

with salt flux \boldsymbol{J}_{S} by molecular diffusion

- rewrite to parcel form given by

$$
\begin{aligned}
\rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t} & =-\boldsymbol{\nabla} \cdot \rho S \boldsymbol{u}-\nabla \cdot \boldsymbol{J}_{S} \\
\rho \frac{\partial S}{\partial t}+S \frac{\partial \rho}{\partial t} & =-\rho \boldsymbol{u} \cdot \nabla S-S \nabla \cdot \rho \boldsymbol{u}-\nabla \cdot \boldsymbol{J}_{S} \\
\rho \frac{D S}{D t} & =-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}=\boldsymbol{\nabla} \cdot \kappa_{S} \boldsymbol{\nabla} S
\end{aligned}
$$

using continuity equation $\partial \rho / \partial t=-\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}$ times S

- specify \boldsymbol{J}_{S} as 'downgradient' diffusive flux $\rightarrow \boldsymbol{J}_{S}=-\kappa_{S} \nabla S$ with molecular diffusivity for salinity $\kappa S \approx 1.2 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$

Introduction
Content
Literature

Hydrodynamics
Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

- general conservation equation

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q, \rho \frac{D C}{D t}=-\nabla \cdot \boldsymbol{J}+Q
$$

flux form and parcel form

- general conservation equation

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q, \quad \rho \frac{D C}{D t}=-\nabla \cdot \boldsymbol{J}+Q
$$

flux form and parcel form

- flux form for momentum component $u_{i}=C$

$$
\frac{\partial}{\partial t} \rho u_{i}=-\boldsymbol{\nabla} \cdot\left(\rho u_{i} \boldsymbol{u}+\boldsymbol{J}^{(i)}\right)+Q_{i}
$$

- general conservation equation

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q \quad, \quad \rho \frac{D C}{D t}=-\nabla \cdot \boldsymbol{J}+Q
$$

flux form and parcel form

- flux form for momentum component $u_{i}=C$

$$
\frac{\partial}{\partial t} \rho u_{i}=-\nabla \cdot\left(\rho u_{i} \boldsymbol{u}+\boldsymbol{J}^{(i)}\right)+Q_{i}
$$

- parcel form for momentum component u_{i}

$$
\rho \frac{D u_{i}}{D t}=-\nabla \cdot J^{(i)}+Q_{i}
$$

- general conservation equation

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q \quad, \quad \rho \frac{D C}{D t}=-\nabla \cdot \boldsymbol{J}+Q
$$

flux form and parcel form

- flux form for momentum component $u_{i}=C$

$$
\frac{\partial}{\partial t} \rho u_{i}=-\nabla \cdot\left(\rho u_{i} \boldsymbol{u}+\boldsymbol{J}^{(i)}\right)+Q_{i}
$$

- parcel form for momentum component u_{i}

$$
\rho \frac{D u_{i}}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}^{(i)}+Q_{i}=-\frac{\partial}{\partial x_{j}} J_{j}^{(i)}+Q_{i}
$$

Newton's law for parcels \rightarrow right hand side are forces (per volume)

- general conservation equation

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q \quad, \quad \rho \frac{D C}{D t}=-\nabla \cdot \boldsymbol{J}+Q
$$

flux form and parcel form

- flux form for momentum component $u_{i}=C$

$$
\frac{\partial}{\partial t} \rho u_{i}=-\nabla \cdot\left(\rho u_{i} \boldsymbol{u}+\boldsymbol{J}^{(i)}\right)+Q_{i}
$$

- parcel form for momentum component u_{i}

$$
\rho \frac{D u_{i}}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}^{(i)}+Q_{i}=-\frac{\partial}{\partial x_{j}} J_{j}^{(i)}+Q_{i}
$$

Newton's law for parcels \rightarrow right hand side are forces (per volume)

- in vector form and with (stress) tensor $-\Pi_{j i}=J_{j}^{(i)}$

$$
\rho \frac{D \boldsymbol{u}}{D t}=\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q}
$$

- general conservation equation

$$
\frac{\partial}{\partial t} \rho C=-\nabla \cdot(\rho C \boldsymbol{u}+\boldsymbol{J})+Q \quad, \quad \rho \frac{D C}{D t}=-\nabla \cdot \boldsymbol{J}+Q
$$

flux form and parcel form

- flux form for momentum component $u_{i}=C$

$$
\frac{\partial}{\partial t} \rho u_{i}=-\nabla \cdot\left(\rho u_{i} \boldsymbol{u}+J^{(i)}\right)+Q_{i}
$$

- parcel form for momentum component u_{i}

$$
\rho \frac{D u_{i}}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}^{(i)}+Q_{i}=-\frac{\partial}{\partial x_{j}} J_{j}^{(i)}+Q_{i}
$$

Newton's law for parcels \rightarrow right hand side are forces (per volume)

- in vector form and with (stress) tensor $-\Pi_{j i}=J_{j}^{(i)}$

$$
\rho \frac{D \boldsymbol{u}}{D t}=\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q}
$$

- $\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}$ and \boldsymbol{Q} are forces (per volume) acting on the water parcel
- the stress tensor $\boldsymbol{\Pi}$ or $\Pi_{j i}$ with

$$
d F_{i}=d A n_{j} \Pi_{j i} \quad \text { or } \quad d \boldsymbol{F}=d \boldsymbol{A} \cdot \boldsymbol{\Pi}, \quad d \boldsymbol{A}=\boldsymbol{n} d A
$$

- $n_{j} \Pi_{j i}$ is the i-component of the force per unit area on the area perpendicular to \boldsymbol{n}

- the stress tensor $\boldsymbol{\Pi}$ or $\Pi_{j i}$ with

$$
d F_{i}=d A n_{j} \Pi_{j i} \quad \text { or } \quad d \boldsymbol{F}=d \boldsymbol{A} \cdot \boldsymbol{\Pi}, \quad d \boldsymbol{A}=\boldsymbol{n} d A
$$

- $n_{j} \Pi_{j i}$ is the i-component of the force per unit area on the area perpendicular to \boldsymbol{n}
- $\Pi_{j i}$ stands for the i-component of the force per unit area (stress) on the area perpendicular to the j-axis

- the stress tensor $\boldsymbol{\Pi}$ or $\Pi_{j i}$ with

$$
d F_{i}=d A n_{j} \Pi_{j i} \quad \text { or } \quad d \boldsymbol{F}=d \boldsymbol{A} \cdot \boldsymbol{\Pi}, \quad d \boldsymbol{A}=\boldsymbol{n} d A
$$

- $n_{j} \Pi_{j i}$ is the i-component of the force per unit area on the area perpendicular to \boldsymbol{n}
- $\Pi_{j i}$ stands for the i-component of the force per unit area (stress) on the area perpendicular to the j-axis
- Π_{11}, Π_{22} and Π_{33} are the normal stresses, rest are tangential stresses

- conservation of momentum (Navier-Stokes equations)

$$
\rho \frac{D \boldsymbol{u}}{D t}=\rho \frac{\partial}{\partial t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}=\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q}
$$

- conservation of momentum (Navier-Stokes equations)

$$
\begin{aligned}
\rho \frac{D u}{D t}=\rho \frac{\partial}{\partial t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} & =\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q} \\
\rho \frac{\partial}{\partial t} u_{i}+\rho u_{j} \frac{\partial}{\partial x_{j}} u_{i} & =\frac{\partial}{\partial x_{j}} \Pi_{j i}+Q_{i}
\end{aligned}
$$

- conservation of momentum (Navier-Stokes equations)

$$
\begin{aligned}
\rho \frac{D \boldsymbol{u}}{D t}=\rho \frac{\partial}{\partial t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} & =\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q} \\
\rho \frac{\partial}{\partial t} u_{i}+\rho u_{j} \frac{\partial}{\partial x_{j}} u_{i} & =\frac{\partial}{\partial x_{j}} \Pi_{j i}+Q_{i}
\end{aligned}
$$

- diagonal elements of $\boldsymbol{\Pi}$ acting normal to the corresponding surface are normal stresses off-diagonal elements of $\boldsymbol{\Pi}$ acting tangential are the tangential stresses
- conservation of momentum (Navier-Stokes equations)

$$
\begin{aligned}
\rho \frac{D \boldsymbol{u}}{D t}=\rho \frac{\partial}{\partial t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} & =\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q} \\
\rho \frac{\partial}{\partial t} u_{i}+\rho u_{j} \frac{\partial}{\partial x_{j}} u_{i} & =\frac{\partial}{\partial x_{j}} \Pi_{j i}+Q_{i}
\end{aligned}
$$

- diagonal elements of $\boldsymbol{\Pi}$ acting normal to the corresponding surface are normal stresses off-diagonal elements of $\boldsymbol{\Pi}$ acting tangential are the tangential stresses
- the mean normal inward stress is the (mechanical) pressure

$$
p=-\frac{1}{3}\left(\Pi_{11}+\Pi_{22}+\Pi_{33}\right)=-\frac{1}{3} \Pi_{i i}=-\frac{1}{3} \operatorname{tr} \Pi
$$

- conservation of momentum (Navier-Stokes equations)

$$
\begin{aligned}
\rho \frac{D u}{D t}=\rho \frac{\partial}{\partial t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} & =\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{Q} \\
\rho \frac{\partial}{\partial t} u_{i}+\rho u_{j} \frac{\partial}{\partial x_{j}} u_{i} & =\frac{\partial}{\partial x_{j}} \Pi_{j i}+Q_{i}
\end{aligned}
$$

- diagonal elements of $\boldsymbol{\Pi}$ acting normal to the corresponding surface are normal stresses
off-diagonal elements of $\boldsymbol{\Pi}$ acting tangential are the tangential stresses
- the mean normal inward stress is the (mechanical) pressure

$$
p=-\frac{1}{3}\left(\Pi_{11}+\Pi_{22}+\Pi_{33}\right)=-\frac{1}{3} \Pi_{i i}=-\frac{1}{3} \operatorname{tr} \Pi
$$

- decompose $\boldsymbol{\Pi}$ into isotropic pressure part and remainder

$$
\Pi_{i j}=-p \delta_{i j}+\Sigma_{i j} \quad \text { or } \quad \boldsymbol{\Pi}=-p \boldsymbol{I}+\boldsymbol{\Sigma} \text { with } \boldsymbol{\nabla} \cdot p \boldsymbol{I}=\boldsymbol{\nabla} p
$$

with the frictional tensor $\boldsymbol{\Sigma}$ with vanishing trace $\Sigma_{i i}$

- pressure force on side A and side B

$$
F_{A}=p\left(x_{0}\right) \delta y \delta z \quad, \quad F_{B}=-p\left(x_{0}+\delta x\right) \delta y \delta z
$$

and similar for all other sides

- pressure force on side A and side B

$$
F_{A}=p\left(x_{0}\right) \delta y \delta z \quad, \quad F_{B}=-p\left(x_{0}+\delta x\right) \delta y \delta z
$$

and similar for all other sides

- with

$$
F_{B}=-\left(p\left(x_{0}\right)+\frac{\partial p}{\partial x} \delta x\right) \delta y \delta z
$$

the net force in x_{i}-direction is given by

$$
F^{(i)}=-\frac{\partial p}{\partial x_{i}} \delta x \delta y \delta z
$$

- pressure force on side A and side B

$$
F_{A}=p\left(x_{0}\right) \delta y \delta z \quad, \quad F_{B}=-p\left(x_{0}+\delta x\right) \delta y \delta z
$$

and similar for all other sides

- with

$$
F_{B}=-\left(p\left(x_{0}\right)+\frac{\partial p}{\partial x} \delta x\right) \delta y \delta z
$$

the net force in x_{i}-direction is given by

$$
F^{(i)}=-\frac{\partial p}{\partial x_{i}} \delta x \delta y \delta z \rightarrow \frac{F^{(i)}}{\delta x \delta y \delta z}=f^{(i)}=\frac{\partial p}{\partial x_{i}} \rightarrow \boldsymbol{f}=-\nabla p
$$

- balance of momentum in parcel form

$$
\rho \frac{D \boldsymbol{u}}{D t}=\nabla \cdot \boldsymbol{\Pi}+\boldsymbol{f}^{\vee}=-\nabla p+\nabla \cdot \boldsymbol{\Sigma}+\boldsymbol{Q}
$$

- balance of momentum in parcel form

$$
\rho \frac{D \boldsymbol{u}}{D t}=\nabla \cdot \boldsymbol{\Pi}+\boldsymbol{f}^{v}=-\nabla p+\nabla \cdot \boldsymbol{\Sigma}+\boldsymbol{Q}
$$

- Newtonian fluid: relation between friction and velocity shear

$$
\Sigma_{i j}=\nu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \frac{\partial u_{\ell}}{\partial x_{\ell}} \delta_{i j}\right)
$$

with the (dynamical) viscosity ν

- balance of momentum in parcel form

$$
\rho \frac{D \boldsymbol{u}}{D t}=\nabla \cdot \boldsymbol{\Pi}+\boldsymbol{f}^{v}=-\nabla p+\nabla \cdot \boldsymbol{\Sigma}+\boldsymbol{Q}
$$

- Newtonian fluid: relation between friction and velocity shear

$$
\Sigma_{i j}=\nu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \frac{\partial u_{\ell}}{\partial x_{\ell}} \delta_{i j}\right)
$$

with the (dynamical) viscosity ν

- Navier-Stokes equation for Newtonian fluid (and constant ν)

$$
\rho \frac{D \boldsymbol{u}}{D t}=-\boldsymbol{\nabla} p+\nu \nabla^{2} \boldsymbol{u}+\frac{\nu}{3} \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{u})+\boldsymbol{Q}
$$

- balance of momentum in parcel form

$$
\rho \frac{D \boldsymbol{u}}{D t}=\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\boldsymbol{f}^{\vee}=-\nabla p+\boldsymbol{\nabla} \cdot \boldsymbol{\Sigma}+\boldsymbol{Q}
$$

- Newtonian fluid: relation between friction and velocity shear

$$
\Sigma_{i j}=\nu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \frac{\partial u_{\ell}}{\partial x_{\ell}} \delta_{i j}\right)
$$

with the (dynamical) viscosity ν

- Navier-Stokes equation for Newtonian fluid (and constant ν)

$$
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\nu \nabla^{2} \boldsymbol{u}+\frac{\nu}{3} \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{u})+\boldsymbol{Q}
$$

- remaining forces in \boldsymbol{Q} are gravity, centrifugal, and Coriolis force

$$
\boldsymbol{Q}=-2 \rho \boldsymbol{\Omega} \times \boldsymbol{u}-\rho \boldsymbol{\nabla}\left(\Phi+\Phi_{\text {tide }}\right)
$$

maybe also surface tension, electromagnetic forces, etc

Introduction
Content
Literature

Hydrodynamics
Euler/Lagrange framework
General conservation equation
Continuity equation
Salinity and salt conservation
Momentum or Navier Stokes equation
Heat and temperature equation

- conservation equation for in situ temperature T

$$
\rho c_{p} \frac{D T}{D t}=\alpha T \frac{D p}{D t}+\frac{\partial H}{\partial S} \nabla \cdot \boldsymbol{J}_{S}-\nabla \cdot \boldsymbol{J}_{H}+\rho \epsilon
$$

with enthalpy H, specific heat $c_{p}=\partial H / \partial T$, thermal expansion coefficient $\alpha=-1 / \rho \partial \rho / \partial T$, kinetic energy dissipation $\rho \epsilon=\Sigma_{i j}^{2}$ and molecular diffusive enthalpy flux \boldsymbol{J}_{H}

- conservation equation for in situ temperature T

$$
\rho c_{p} \frac{D T}{D t}=\alpha T \frac{D p}{D t}+\frac{\partial H}{\partial S} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{H}+\rho \epsilon
$$

with enthalpy H, specific heat $c_{p}=\partial H / \partial T$, thermal expansion coefficient $\alpha=-1 / \rho \partial \rho / \partial T$, kinetic energy dissipation $\rho \epsilon=\Sigma_{i j}^{2}$ and molecular diffusive enthalpy flux \boldsymbol{J}_{H}

- assume adiabatic conditions, i.e. $\boldsymbol{J}_{S}=0, \boldsymbol{J}_{H}=0$ and $\epsilon=0$

$$
\rho c_{p} \frac{D T}{D t}-\alpha T \frac{D p}{D t}=0
$$

- conservation equation for in situ temperature T

$$
\rho c_{p} \frac{D T}{D t}=\alpha T \frac{D p}{D t}+\frac{\partial H}{\partial S} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{H}+\rho \epsilon
$$

with enthalpy H, specific heat $c_{p}=\partial H / \partial T$, thermal expansion coefficient $\alpha=-1 / \rho \partial \rho / \partial T$, kinetic energy dissipation $\rho \epsilon=\Sigma_{i j}^{2}$ and molecular diffusive enthalpy flux \boldsymbol{J}_{H}

- assume adiabatic conditions, i.e. $\boldsymbol{J}_{S}=0, \boldsymbol{J}_{H}=0$ and $\epsilon=0$

$$
\rho c_{p} \frac{D T}{D t}-\alpha T \frac{D p}{D t}=0 \text { or } \frac{D T}{D t}=\Gamma \frac{D p}{D t}
$$

with adiabatic lapse rate $\Gamma=\alpha T /\left(\rho c_{p}\right)$

- conservation equation for in situ temperature T

$$
\rho c_{p} \frac{D T}{D t}=\alpha T \frac{D p}{D t}+\frac{\partial H}{\partial S} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{S}-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{H}+\rho \epsilon
$$

with enthalpy H, specific heat $c_{p}=\partial H / \partial T$, thermal expansion coefficient $\alpha=-1 / \rho \partial \rho / \partial T$, kinetic energy dissipation $\rho \epsilon=\Sigma_{i j}^{2}$ and molecular diffusive enthalpy flux \boldsymbol{J}_{H}

- assume adiabatic conditions, i.e. $\boldsymbol{J}_{S}=0, \boldsymbol{J}_{H}=0$ and $\epsilon=0$

$$
\rho c_{p} \frac{D T}{D t}-\alpha T \frac{D p}{D t}=0 \text { or } \frac{D T}{D t}=\Gamma \frac{D p}{D t}
$$

with adiabatic lapse rate $\Gamma=\alpha T /\left(\rho c_{p}\right)$

- in situ temperature is not "conserved"
- conservation equation for in situ temperature T

$$
\rho c_{p} \frac{D T}{D t}=\alpha T \frac{D p}{D t}+\frac{\partial H}{\partial S} \nabla \cdot \boldsymbol{J}_{S}-\nabla \cdot \boldsymbol{J}_{H}+\rho \epsilon
$$

with enthalpy H, specific heat $c_{p}=\partial H / \partial T$, thermal expansion coefficient $\alpha=-1 / \rho \partial \rho / \partial T$, kinetic energy dissipation $\rho \epsilon=\Sigma_{i j}^{2}$ and molecular diffusive enthalpy flux \boldsymbol{J}_{H}

- assume adiabatic conditions, i.e. $\boldsymbol{J}_{S}=0, \boldsymbol{J}_{H}=0$ and $\epsilon=0$

$$
\rho c_{p} \frac{D T}{D t}-\alpha T \frac{D p}{D t}=0 \text { or } \frac{D T}{D t}=\Gamma \frac{D p}{D t}
$$

with adiabatic lapse rate $\Gamma=\alpha T /\left(\rho c_{p}\right)$

- in situ temperature is not "conserved"
- changes in temperature and pressure are related by $d T=\Gamma d p$
- conservation equation for in situ temperature T

$$
\rho c_{p} \frac{D T}{D t}=\alpha T \frac{D p}{D t}+\frac{\partial H}{\partial S} \nabla \cdot \boldsymbol{J}_{S}-\nabla \cdot \boldsymbol{J}_{H}+\rho \epsilon
$$

with enthalpy H, specific heat $c_{p}=\partial H / \partial T$, thermal expansion coefficient $\alpha=-1 / \rho \partial \rho / \partial T$, kinetic energy dissipation $\rho \epsilon=\Sigma_{i j}^{2}$ and molecular diffusive enthalpy flux \boldsymbol{J}_{H}

- assume adiabatic conditions, i.e. $\boldsymbol{J}_{S}=0, \boldsymbol{J}_{H}=0$ and $\epsilon=0$

$$
\rho c_{p} \frac{D T}{D t}-\alpha T \frac{D p}{D t}=0 \text { or } \frac{D T}{D t}=\Gamma \frac{D p}{D t}
$$

with adiabatic lapse rate $\Gamma=\alpha T /\left(\rho c_{p}\right)$

- in situ temperature is not "conserved"
- changes in temperature and pressure are related by $d T=\Gamma d p$
- typical value is $\Gamma \approx 10^{-8} \mathrm{~K} / \mathrm{Pa}=10^{-4} \mathrm{~K} / \mathrm{dbar} \sim 0.1 \mathrm{~K} / \mathrm{km}$
- use equation for "conservative temperature" Θ instead

$$
\rho \frac{D \Theta}{D t}=\left(\frac{\theta}{T} \frac{\partial H}{\partial S}-\frac{\partial H^{0}}{\partial S}\right) \nabla \cdot \frac{\boldsymbol{J}_{S}}{c_{P}^{\star}}+\frac{\theta}{T}\left(-\nabla \cdot \frac{\boldsymbol{J}_{H}}{c_{p}^{\star}}+\rho \frac{\epsilon}{c_{p}^{\star}}\right)
$$

with "potential enthalpy" $H^{0}=H\left(p=p_{\text {ref }}\right)$, reference specific heat $c_{p}^{\star}=$ const, " potential temperature" $\theta=\partial H^{0} / \partial \eta$ (with entropy η)

- now assume $\theta / T \approx 1$ with relative error of 10^{-3}
- use equation for "conservative temperature" Θ instead

$$
\rho \frac{D \Theta}{D t}=\left(\frac{\theta}{T} \frac{\partial H}{\partial S}-\frac{\partial H^{0}}{\partial S}\right) \nabla \cdot \frac{\boldsymbol{J}_{S}}{c_{p}^{\star}}+\frac{\theta}{T}\left(-\nabla \cdot \frac{\boldsymbol{J}_{H}}{c_{p}^{\star}}+\rho \frac{\epsilon}{c_{p}^{\star}}\right)
$$

with "potential enthalpy" $H^{0}=H\left(p=p_{\text {ref }}\right)$, reference specific heat $c_{p}^{\star}=$ const, " potential temperature" $\theta=\partial H^{0} / \partial \eta$ (with entropy η)

- now assume $\theta / T \approx 1$ with relative error of 10^{-3}
- neglect effect of salt fluxes compared to heat flux term $\boldsymbol{J}_{\boldsymbol{H}}$
- use equation for "conservative temperature" Θ instead

$$
\rho \frac{D \Theta}{D t}=\left(\frac{\theta}{T} \frac{\partial H}{\partial S}-\frac{\partial H^{0}}{\partial S}\right) \nabla \cdot \frac{J_{S}}{c_{p}^{\star}}+\frac{\theta}{T}\left(-\nabla \cdot \frac{\boldsymbol{J}_{H}}{c_{p}^{\star}}+\rho \frac{\epsilon}{c_{p}^{\star}}\right)
$$

with " potential enthalpy" $H^{0}=H\left(p=p_{\text {ref }}\right)$, reference specific heat $c_{p}^{\star}=$ const, " potential temperature" $\theta=\partial H^{0} / \partial \eta$ (with entropy η)

- now assume $\theta / T \approx 1$ with relative error of 10^{-3}
- neglect effect of salt fluxes compared to heat flux term $\boldsymbol{J}_{\boldsymbol{H}}$
- neglect effect of dissipation compared to heat flux term
- use equation for "conservative temperature" Θ instead

$$
\rho \frac{D \Theta}{D t}=\left(\frac{\theta}{T} \frac{\partial H}{\partial S}-\frac{\partial H^{0}}{\partial S}\right) \nabla \cdot \frac{\boldsymbol{J}_{S}}{c_{p}^{\star}}+\frac{\theta}{T}\left(-\nabla \cdot \frac{\boldsymbol{J}_{H}}{c_{p}^{\star}}+\rho \frac{\epsilon}{c_{p}^{\star}}\right)
$$

with "potential enthalpy" $H^{0}=H\left(p=p_{\text {ref }}\right)$, reference specific heat $c_{p}^{\star}=$ const, "potential temperature" $\theta=\partial H^{0} / \partial \eta$ (with entropy η)

- now assume $\theta / T \approx 1$ with relative error of 10^{-3}
- neglect effect of salt fluxes compared to heat flux term \boldsymbol{J}_{H}
- neglect effect of dissipation compared to heat flux term
- get temperature equation containing the divergence of \boldsymbol{J}_{H}

$$
\rho \frac{D \Theta}{D t}=-\nabla \cdot J_{\Theta}+\text { very small source term }
$$

with $\boldsymbol{J}_{\Theta}=\boldsymbol{J}_{H} / c_{p}^{\star} \rightarrow$ neglect small source term

- use equation for "conservative temperature" Θ instead

$$
\rho \frac{D \Theta}{D t}=\left(\frac{\theta}{T} \frac{\partial H}{\partial S}-\frac{\partial H^{0}}{\partial S}\right) \nabla \cdot \frac{J_{S}}{c_{p}^{\star}}+\frac{\theta}{T}\left(-\nabla \cdot \frac{J_{H}}{c_{p}^{\star}}+\rho \frac{\epsilon}{c_{p}^{\star}}\right)
$$

with "potential enthalpy" $H^{0}=H\left(p=p_{\text {ref }}\right)$, reference specific heat $c_{p}^{\star}=$ const, " potential temperature" $\theta=\partial H^{0} / \partial \eta$ (with entropy η)

- now assume $\theta / T \approx 1$ with relative error of 10^{-3}
- neglect effect of salt fluxes compared to heat flux term $\boldsymbol{J}_{\boldsymbol{H}}$
- neglect effect of dissipation compared to heat flux term
- get temperature equation containing the divergence of \boldsymbol{J}_{H}

$$
\rho \frac{D \Theta}{D t}=-\nabla \cdot J_{\Theta}+\text { very small source term } \approx \nabla \cdot \kappa_{\Theta} \nabla \Theta
$$

with $\boldsymbol{J}_{\Theta}=\boldsymbol{J}_{H} / c_{p}^{\star} \rightarrow$ neglect small source term

- specify \boldsymbol{J}_{Θ} as 'downgradient' diffusive flux $\rightarrow \boldsymbol{J}_{\Theta}=-\kappa_{\Theta} \nabla \Theta$ with molecular diffusivity for heat (enthalpy) $\kappa_{\Theta} \approx 1.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$

Summary conservation laws

- momentum equation

$$
\begin{aligned}
& \rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\boldsymbol{\nabla} \cdot \boldsymbol{\Sigma}+\boldsymbol{Q}, \quad \boldsymbol{Q}=-2 \rho \boldsymbol{\Omega} \times \boldsymbol{u}-\rho \boldsymbol{\nabla}\left(\Phi+\Phi_{\text {tide }}\right) \\
& \text { with geopotential }(\Phi=g z) \text { and tidal potential } \Phi_{\text {tide }}(\boldsymbol{x}, t)
\end{aligned}
$$

- continuity equation

$$
\frac{D \rho}{D t}=-\rho \boldsymbol{\nabla} \cdot \boldsymbol{u}, \quad \rho \frac{D v}{D t}=\nabla \cdot \boldsymbol{u}
$$

- salt conservation equation

$$
\rho \frac{D S}{D t}=-\nabla \cdot J_{S}=\nabla \cdot \kappa_{S} \nabla S
$$

- conservative temperature equation

$$
\rho \frac{D \Theta}{D t}=-\nabla \cdot J_{\Theta}+\text { very small source term } \approx \nabla \cdot \kappa_{\Theta} \nabla \Theta
$$

- equation of state with conservative temperature as state variable

$$
\rho=\rho(S, \Theta, p)
$$

