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Content dynamical oceanography

1. Introduction

2. Hydrodynamics

Kinematics, continuity, momentum and thermodynamic equation

3. Approximations and simplifications

Boussinesq, hydrostatic, layered models, quasi-geostrophic
approximation, potential vorticity

4. Waves

Gravity waves w/o rotation, Kelvin waves, geostrophic adjustment,
Rossby waves, vertical modes, equatorial waves

5. Wind driven circulation

Ekman-layers, -spiral, -transport, -pumping, Sverdrup transport,
western boundary currents

6. Thermohaline circulation

basic ingredients and dynamics, Stommel-Arons model



Introduction Content 3/ 24

Introduction Literature 4/ 24

Literature

I Marshall and Plumb:

Atmosphere, ocean and climate dynamics

I Cushman-Roisin, Beckers:

Introduction to geophysical fluid dynamics

I Talley, Pickard, Emery, Swift:

Descriptive physical oceanography
(http://booksite.elsevier.com/DPO)

I (Olbers, Willebrand, Eden: Ocean dynamics)
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I any fluid is made of small ’water parcels’

I dimensions are small compared to relevant scales of the fluid

I small but finite, dimensions are treated as infinitesimally small

I still made of a infinitesimal large number of molecules

I small but constant mass, individual molecules might change

I velocity u is the parcel velocity, a parcel has properties, e.g. C
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I consider property C (t, x , y , z) of a water parcel

δC =
∂C

∂t
δt +

∂C

∂x
δx +

∂C

∂y
δy +

∂C

∂z
δz

I choose δx = uδt, δy = vδt, and δz = wδt

i.e. calculate δC following path of parcel

δC =
∂C

∂t
δt +

(
∂C

∂x
u +

∂C

∂y
v +

∂C

∂z
w

)
δt → δC

δt
=
∂C

∂t
+ u ·∇C
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I Euler’s relation

δC

δt
→
(
∂

∂t
C

)
parcel

=
∂

∂t
C + u ·∇C ≡ D

Dt
C

I D/Dt = ∂/∂t + u ·∇ is often called ’material’ or ’substantial’
derivative

I local rate of change plus change implied by advection of fluid

I if DC/Dt = 0, property C of parcels does not change, it’s
conservative (but locally C might change in time)

I Lagrangian frameworks uses left hand side of DC/Dt

Eulerian framework uses right hand side of DC/Dt

both are equivalent but Eulerian framework is often more convenient
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I consider volume V , fixed in space and bounded by a surface A

I and a scalar fluid property C concentration

(in units of C per kg sea water or ρC in units of C per m3)

I total amount of the property C in V is given by∫
V

ρC dV

and may change in time by two ways:

I by a flux across surface A
I by an interior source or sink
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I consider volume V , fixed in space and bounded by a surface A

I outward transport across A∮
A

(ρCu + J) · dA

I by transport by water parcels, an ”advective” part ρCu

I and by a non-advective flux J which is everything else, e.g diffusion,
heat conduction, radiation etc.
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I consider volume V , fixed in space and bounded by a surface A

I interior sources/sinks Q (units of C per time and volume),

e.g. heat sources, radioactive decay, chemical reaction,∫
V

Q dV
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I consider volume V , fixed in space and bounded by a surface A

I total rate of change of the C -content in the volume

∂

∂t

∫
V

ρC dV = −
∮
A

(ρCu + J) · dA +

∫
V

Q dV

I the surface integral may be rewritten with Gauss law as∮
A

(ρCu + J) · dA =

∫
V

∇ · (ρCu + J) dV

I for fixed volume ∂/∂t and integral commute
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I consider volume V , fixed in space and bounded by a surface A

I total rate of change of the C -content in the volume∫
V

[
∂

∂t
ρC + ∇ · (ρCu + J)− Q

]
dV = 0

I since this holds for arbitrary volume, the integrand has to vanish

∂

∂t
ρC + ∇ · (ρCu + J)− Q = 0

which is the general conservation equation in flux form
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I general conservation law in flux form

∂

∂t
ρC = −∇ · (ρCu + J) + Q

I take C = 1( kg /kg sea water), → ρC becomes total mass per m3

I total mass has no source → Q = 0 and J = 0

I mass conservation or continuity equation

∂

∂t
ρ = −∇ · ρu

I possible to rewrite flux form (above) to parcel form

∂

∂t
ρ+ u ·∇ρ ≡ Dρ

Dt
= −ρ∇ · u

I with specific volume v = 1/ρ continuity equation becomes

Dρ

Dt
=

D

Dt
v−1 = − 1

v2

Dv

Dt
= − 1

v
∇ · u → ρ

Dv

Dt
= ∇ · u

parcel form of continuity equation
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I divergence of mass flux F in x direction

F x(x0 + δx)− F x(x0) =

(
ρu +

∂ρu

∂x
δx +����O(δx2)

)
δyδz − ρuδyδz

I rate of change of mass

δM

δt
=

∂

∂t
(ρδxδyδz) =

∂ρ

∂t
δxδyδz
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I divergence of mass flux F in x direction

F x(x0 + δx)− F x(x0) = (ρu +
∂ρu

∂x
δx)δyδz − ρuδyδz

I rate of change of mass

δM

δt
=

∂

∂t
(ρδxδyδz) =

∂ρ

∂t
δxδyδz

I divergence of mass flux F in y direction

F y (y0 + δy)− F y (y0) =
∂ρv

∂y
δxδyδz

and similar for z

I mass change is balanced by flux divergences

δM

δt
=

∂ρ

∂t
δxδyδz = −

(
∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)
δxδyδz

∂ρ

∂t
= −∇ · ρu

which is again the flux form of the continuity equation
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I general conservation law in flux form

∂

∂t
ρC = −∇ · (ρCu + J) + Q

I salt conservation equation with C = S , Q = 0 but J = JS

∂

∂t
ρS = −∇ · (ρSu + JS)

with salt flux JS by molecular diffusion

I rewrite to parcel form given by

ρ
∂S

∂t
+ S

∂ρ

∂t
= −∇ · ρSu −∇ · JS

ρ
∂S

∂t
+ S

∂ρ

∂t
= −ρu ·∇S − S∇ · ρu −∇ · JS

ρ
DS

Dt
= −∇ · JS = ∇ · κS∇S

using continuity equation ∂ρ/∂t = −∇ · ρu times S

I specify JS as ’downgradient’ diffusive flux → JS = −κS∇S

with molecular diffusivity for salinity κS ≈ 1.2× 10−9 m2/s
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I general conservation equation

∂

∂t
ρC = −∇ · (ρCu + J) + Q , ρ

DC

Dt
= −∇ · J + Q

flux form and parcel form

I flux form for momentum component ui = C

∂

∂t
ρui = −∇ ·

(
ρuiu + J(i)

)
+ Qi

I parcel form for momentum component ui

ρ
Dui
Dt

= −∇ · J(i) + Qi = − ∂

∂xj
J

(i)
j + Qi

Newton’s law for parcels → right hand side are forces (per volume)

I in vector form and with (stress) tensor −Πji = J
(i)
j

ρ
Du
Dt

= ∇ ·Π + Q

I ∇ ·Π and Q are forces (per volume) acting on the water parcel
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I the stress tensor Π or Πji with

dFi = dA nj Πji or dF = dA ·Π , dA = ndA

I njΠji is the i–component of the force per unit area on the area
perpendicular to n

I Πji stands for the i–component of the force per unit area (stress)

on the area perpendicular to the j–axis

I Π11, Π22 and Π33 are the normal stresses, rest are tangential stresses
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I conservation of momentum (Navier-Stokes equations)

ρ
Du
Dt

= ρ
∂

∂t
u + ρu ·∇u = ∇ ·Π + Q

ρ
∂

∂t
ui + ρuj

∂

∂xj
ui =

∂

∂xj
Πji + Qi

I diagonal elements of Π acting normal to the corresponding surface
are normal stresses

off-diagonal elements of Π acting tangential are the tangential
stresses

I the mean normal inward stress is the (mechanical) pressure

p = −1

3
(Π11 + Π22 + Π33) = −1

3
Πii = −1

3
tr Π

I decompose Π into isotropic pressure part and remainder

Πij = −pδij + Σij or Π = −pI + Σ with ∇ · pI = ∇p

with the frictional tensor Σ with vanishing trace Σii
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B

xδ

δ y

δ zA

I pressure force on side A and side B

FA = p(x0)δyδz , FB = −p(x0 + δx)δyδz

and similar for all other sides

I with

FB = −
(
p(x0) +

∂p

∂x
δx

)
δyδz

the net force in xi -direction is given by

F (i) = − ∂p
∂xi

δxδyδz → F (i)

δxδyδz
= f (i) =

∂p

∂xi
→ f = −∇p
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I balance of momentum in parcel form

ρ
Du
Dt

= ∇ ·Π + f v = −∇p + ∇ ·Σ + Q

I Newtonian fluid: relation between friction and velocity shear

Σij = ν

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂u`
∂x`

δij

)
with the (dynamical) viscosity ν

I Navier-Stokes equation for Newtonian fluid (and constant ν)

ρ
Du
Dt

= −∇p + ν∇2u +
ν

3
∇(∇ · u) + Q

I remaining forces in Q are gravity, centrifugal, and Coriolis force

Q = −2ρΩ× u − ρ∇(Φ + Φtide)

maybe also surface tension, electromagnetic forces, etc
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I conservation equation for in situ temperature T

ρcp
DT

Dt
= αT

Dp

Dt
+
∂H

∂S
∇ · JS −∇ · JH + ρε

with enthalpy H, specific heat cp = ∂H/∂T , thermal expansion
coefficient α = −1/ρ ∂ρ/∂T , kinetic energy dissipation ρε = Σ2

ij

and molecular diffusive enthalpy flux JH

I assume adiabatic conditions, i.e. JS = 0, JH = 0 and ε = 0

ρcp
DT

Dt
− αT Dp

Dt
= 0 or

DT

Dt
= Γ

Dp

Dt

with adiabatic lapse rate Γ = αT/(ρcp)

I in situ temperature is not ”conserved”

I changes in temperature and pressure are related by dT = Γdp

I typical value is Γ ≈ 10−8 K/Pa = 10−4 K/dbar ∼ 0.1K/km
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I use equation for ”conservative temperature” Θ instead

ρ
DΘ

Dt
=

(
θ

T

∂H

∂S
− ∂H0

∂S

)
∇ · JS

c?p
+
θ

T

(
−∇ · JH

c?p
+ ρ

ε

c?p

)
with ”potential enthalpy” H0 = H(p = pref ), reference specific heat
c?p = const, ”potential temperature” θ = ∂H0/∂η (with entropy η)

I now assume θ/T ≈ 1 with relative error of 10−3

I neglect effect of salt fluxes compared to heat flux term JH

I neglect effect of dissipation compared to heat flux term

I get temperature equation containing the divergence of JH

ρ
DΘ

Dt
= −∇ · JΘ + very small source term ≈∇ · κΘ∇Θ

with JΘ = JH/c
?
p → neglect small source term

I specify JΘ as ’downgradient’ diffusive flux → JΘ = −κΘ∇Θ

with molecular diffusivity for heat (enthalpy) κΘ ≈ 1.4× 10−7 m2/s
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Summary conservation laws

I momentum equation

ρ
Du
Dt

= −∇p + ∇ ·Σ + Q , Q = −2ρΩ× u − ρ∇(Φ + Φtide)

with geopotential (Φ = gz) and tidal potential Φtide(x , t)

I continuity equation

Dρ

Dt
= −ρ∇ · u , ρ

Dv

Dt
= ∇ · u

I salt conservation equation

ρ
DS

Dt
= −∇ · JS = ∇ · κS∇S

I conservative temperature equation

ρ
DΘ

Dt
= −∇ · JΘ + very small source term ≈∇ · κΘ∇Θ

I equation of state with conservative temperature as state variable

ρ = ρ(S ,Θ, p)
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